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Abstract: The ability of Density Functional Theory to
predict the electronic and magnetic properties of semi-
infinite graphene with a single bare edge has been probed.
In order to improve the accuracy of spin-unrestricted
calculations performed with semilocal density functionals,
higher-level methods including double hybrid density func-
tionals and many-body perturbation theory have been
applied to the polycyclic aromatic hydrocarbons model
systems. We show that the antiferromagnetic or ferromag-
netic tendencies of the corresponding electronic ground
states strongly depend on the choice of the density
functional. In addition the relative stability of the armchair
and zigzag edges has been investigated, emphasizing the
importance of using methods beyond semilocals density
functionals.

Graphene, which is a monolayer of carbon atoms packed into
a dense honeycomb crystal structure, belongs to the rich world
of carbon nanostructures.1 It has been the subject of intense
scrutinity,2,3 especially because this kind of structure was
previously presumed not to exist in the free state. This exciting
object, with unusual electronic and magnetic properties, is
considered to be among the most important materials for
nanoscale device applications.4 However, all those remarkable
properties can be strongly affected by the presence of edges
which are in general a combination of armchair and zigzag
regions.5-7 In particular, theoretical and experimental studies
have been devoted to the demonstration that edges of graphene
substantially modify their electronic and magnetic properties.8-10

Therefeore, much effort has been focused on the study of the
edges in graphitic nanomaterials, such as graphene and also
nanotubes. Indeed, the strong adhesion between the edge of a
tube and the metal clusters from which they are produced is a
requirement for the nanotube growth.11

Graphene exists as flakes also called nanographenes or, for
the smallest sizes, polycyclic aromatic hydrocarbons (PAHs).
A large spectrum of theoretical methods can therefore be applied
according to the size of the system, ranging from intuitive
(semiempirical) tight-binding models to highly accurate (ab
initio) wave function based methods. Electronic structure
calculations of nanomaterials extensively rely on Density
Functional Theory (DFT) and especially on semilocal ap-
proximations to the exchange-correlation density functional,
such as the Local Density Approximation (LDA) or Generalized
Gradient Approximation (GGA).12 The favorable computational
cost of these methods together with periodic boundary conditions
(PBC) have allowed calculations on infinite or semi-infinite
graphene,13-17 using the pseudopotential plane-waves method.
In addition single-hybrid approximations, incorporating a small
proportion of exact exchange, have been used for periodic
graphenes thanks to a screening procedure.18-20 Finite nan-
ographenes have also been studied using DFT with a strong
focus on hydrogen-terminated PAHs20-22 (save one excep-
tion23).

In this Letter, we adopt a new approach, using many-body
perturbation theory as well as more elaborate density functionals,
to investigate the electronic and magnetic properties of edges
present in PAHs. Different PAHs are considered with all the
edges hydrogenated but one, thus mimicking semi-infinite
graphenes with bare active sites. One can expect that such
higher-level methods should indeed be required for an accurate
description of edges. This is necessary to understand the key
role played by edges in the modification of the properties of
PAH as well as their reactivity.

The efficiency of semilocal approximations has been probed
by using the Perdew-Burke-Ernzerhof (PBE)24 GGA density
functional in conjunction with triple-� plus polarization Gaussian
basis sets (TZVPP) and the resolution-of-the-identity (RI)
approximation25 implemented in the TURBOMOLE quantum
chemical program package version 5.10.26 Approximations
depending not only on the electron density and on its gradient
but also on the Kohn-Sham orbital kinetic energy density,
called Meta-Generalized Gradient Approximations (Meta-GGA),
have also been considered with the TPSS27 nonempirical density
functional. Wave function based methods constitute a usually
more accurate but also time-consuming alternative. For medium-
sized systems, second order Møller-Plesset (MP2) perturbation
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theory (together with the RI approximation) represents an
affordable yet powerful method in comparison with DFT,
especially in the case of dispersive interactions. Recently a
simple, partly empirical, improvement of the method has been
proposed by scaling the spin components (SCS) of the pair
correlation energies.28 Like its parent method, the SCS-MP2
method can however fail to describe open-shells species, such
as the zigzag (bare) edge of PAHs (Vide infra). Double-hybrid
density functionals (DHDF),29,30 which lie between pure density
and wave function approaches, appear more robust with regard
to spin contamination problems occurring in spin-unrestricted
calculations.31 The double hybrid functional tested in this work
(B2-PLYP)mixestheB8832exchangefunctionalwithHartree-Fock-
like exchange and LYP33 correlation functional with MP2-like
correlation energy.

Due to the presence of unpaired electrons along the zigzag
(ZZ) edge of graphene, special care must be taken to ensure
that first principles calculations correctly reproduce the spin
density distribution, i.e., Fs(r) ) FR(r) - F�(r), of the electronic
ground state.23 Prior to the energetical comparison between both
edges, methods causing a deterioration of Fs(r) must therefore
be identified and better avoided. This investigation has begun
with the bare-edged PAH[3,3] system (28 carbon and 11
hydrogen atoms), where [x,y] specify the number of adjacent
cycles in the horizontal (x) and vertical (y) directions (see Figure
1). Isosurfaces corresponding to the PBE, TPSS, and B2-PLYP
density functionals are reported in Figure 2 together with the
expectation value of S2. Whether the latter value should be used
as a diagnostic tool to judge the quality of a spin-unrestricted
calculation is still controversial as far as DFT is concerned
because only the noninteracting Kohn-Sham wave function is

used for the estimation.34 In this case a clear correlation between
the error on 〈S2〉 (equal to 3.75 for a pure quadruplet) and the
delocalization of Fs(r) can be observed. This effect is particularly
significant in the case of the B2-PLYP functional and can be
most probably attributed to the large fraction (≈50%) of exact
exchange. For comparison, a spin-unrestricted Hartree-Fock
(UHF) calculation results in 〈S2〉 as high as 6.32. All density
functionals predict a spin density distribution with large positive
contributions corresponding to the unpaired electrons of the
unsaturated carbons and smaller negative contributions on the
opposite hydrogenated edge due to spin polarization effects.
These very characteristics have been also observed for the
smaller PAH[4,1] system from B3LYP spin-unrestricted cal-
culations.23 This is also similar to the antiferromagnetic ground
state of PAHs fully saturated by hydrogen.20,22 We have then
considered the larger zigzag bare-edged PAH[5,5] (66 carbon
and 17 hydrogen atoms). Again the spin density exhibits a larger
delocalization when the double hybrid density functional is used
(see Figure 3). Interestingly the largest 〈S2〉 value has been
obtained for the PBE calculation, whose convergence was
particularly difficult to achieve. But the main difference with
respect to the smaller PAH[3,3] system is the spin polarization
on the opposite, hydrogenated, edge. Contributions to the spin
density on this side are indeed positive for all density func-
tionals, showing a tendency toward ferromagnetism. This is not
only in contrast to the case of the PAH[3,3] system but also of
the fully hydrogenated PAHs, where the energy of the ferro-
magnetic state always lies higher than for the antiferromagnetic
state.20,22

We now compare the structures and energetical stability of
the ZZ and AA edges. Geometry optimizations have been

Figure 1. Zigzag (ZZ) and armchair (AA) edges of the bare-edged PAH[3,3] system optimized at the PBE/TZVPP level of
theory. For AA, contours of the PBE electronic density are also plotted.

Figure 2. Spin density (green positive, yellow negative) for the zigzag edge of PAH[3,3] obtained with the PBE, TPSS, and
B2-PLYP density functionals. The expectation value of the S2 operator is also reported.
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performed at the PBE/TZVPP level of theory. Interestingly the
characteristic distances and angle (see Table 1) are in excellent
agreement with DFT calculations of infinite nanoribbons. As
previously noted,13,35 the shortening of the C-C bond at the
AA edge can be rationalized by the formation of a triple-bond,
in agreement with the accumulation of electronic density
between both carbon atoms (see Figure 1). The bond length is
actually closer to the distance observed in benzyne (1.27 Å)36

than in acetylene (1.20 Å). The harmonic vibrational frequencies
associated with the symmetric and antisymmetric C-C stretch
combinations are found at 1921 and 1948 cm-1, respectively.
These values are strongly blue-shifted (approximately 400 cm-1)
with respect to the other C-C stretches in the 1600-1500 cm-1

range: as an example the frequency of the middle C-C bond
of the bare edge is found at 1539 cm-1. The present calculations
show that evidence for the formation of triple bonds at the
armchair edge can be found in the IR spectra of these species.
In spite of the weak intensities calculated for these bands, their
isolated position in the spectrum should make their experimental
observation relatively easy.

Measuring the relative reactivity of both edges should help
to identify the best candidate as a precursor to a nanotube
growing on a metallic particle. We have calculated the C-H
bonds dissociation energy

where n is the number of unsaturated carbon atoms, Ebare is the
energy of the bare-edged AA or ZZ system, EH is the energy of
the hydrogen atom, and EH-term is the energy of the fully
hydrogenated PAH. Our work has been however not restricted
to density functional methods and includes the perturbational
approaches detailed previously.37 Results reported in Table 2
confirm that, except for the MP2 calculation, all methods tested
in this work predict that the bare-edged AA structure is more
stable than the ZZ one. The SCS procedure succeeds in

correcting the MP2 failure and leads to energies in excellent
agreement with the double hybrid density functional calculation.
Both methods also predict AA and ZZ energies close to the
values obtained from DFT calculations of infinite nanoribbons
(respectively, 4.36 and 5.36 eV15). The PBE density functional
significantly underestimates (0.25 eV) the difference between
the ZZ and AA dissociation energies, mainly because of too
weak C-H bonds at the ZZ edge. We note that the PBE/TZVPP
dissociation energy of the ZZ edge is in excellent agreement
with the value obtained by May et al.21 (5.04 eV) on the same
system with another GGA density functional. Following Ko-
skinen et al.,15 the reactivity of both bare-edged structures can
also be judged by considering the following reaction

where P · represents the bare-edged system, PH represents the
H-terminated PAH, and Ediss′ is calculated by subtracting the
H2 dissociation energy to the C-H bonds dissociation energy.
The previous reaction can be seen as the first bimolecular
reaction step in the mechanism of hydrogenation. According to
the values of Ediss′ reported in Table 3, the bimolecular reaction
is endergonic for the AA edge and exergonic for the ZZ edge.
The difference is obviously related to the presence of highly
reactive dangling bonds in the ZZ case.

In conclusion, magnetic properties resulting from spin-
unrestricted DFT calculations are not only influenced by the

Figure 3. Spin density (green positive, yellow negative) for the zigzag edge of PAH[5,5] obtained with the PBE, TPSS, and
B2-PLYP density functionals. The expectation value of the S2 operator is also reported.

Table 1. Structural Parameters of the Zigzag (ZZ) and
Armchair (AA) Edges Obtained from PBE/TZVPP
Geometry Optimizations of the PAH[3,3] System (See
Labels on Figure 1)

parameters PAH[3,3] ∞ nanoribbons

C1-C2 (Å) 1.38 1.37,35 1.38,13 1.3915

C2-C3 (Å) 1.47 1.4715

C4-C5 (Å) 1.26 1.23,13,16,35 1.2415

C5-C6 (Å) 1.38 1.3915,16

C4-C5-C6 (°) 127 12615

Ediss )
1
n

(Ebare + nEH - EH-term) (1)

Table 2. C-H Bonds Dissociation Energy (eV) for
Armchair (AA) and Zigzag (ZZ) Edges of PAH[3,3]
Optimized at the PBE/TZVPP Level of Theorya

method AA ZZ ∆E

PBE/TZVPP 4.37 5.02 0.65
B2-PLYP/TZVPP 4.46 5.36 0.90
MP2/TZVPP 4.34 4.08 -0.27
SCS-MP2/TZVPP 4.44 5.34 0.90

a Difference between both values is reported in the last column.

Table 3. Difference between C-H bonds Dissociation
Energy and H2 Dissociation Energy (eV) for Armchair (AA)
and Zigzag (ZZ) Edges of PAH[3,3] Optimized at the
PBE/TZVPP Level of Theory

method AA ZZ

PBE/TZVPP -0.17 0.48
B2-PLYP/TZVPP -0.17 0.73
MP2/TZVPP -0.15 -0.41
SCS-MP2/TZVPP -0.22 0.68

P· + H298
-E′

diss
PH + H·
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choice of the density functional, through the delocalization of
the spin density, but also by the size of the system, which can
alter the relative weight of the antiferromagnetic-like and
ferromagnetic-like states. In addition, although all methods tested
in this work confirm the stronger stability of the armchair with
respect to the zigzag bare edge, semilocal density functionals
appear to underestimate this energetical preference. Periodic
boundary calculations of nanoribbons using such a method
should therefore consider this bias demonstrated here from high
level calculations of closely related finite-size systems.
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Abstract: We propose a method of spatial decomposition analysis (SDA) to study the
thermodynamics of association in solution, based on three-dimensional molecular theory of
solvation. We decompose the solvation thermodynamics quantities into the excluded volume
and solvation shell terms and further break them down into partial contributions of the functional
groups of the associating species. For illustration, we applied the SDA method to the
complexation of �-cyclodextrin and 1-adamantanecarboxylic acid in water. We calculated the
changes in the free energy and in the partial molar volume upon the association and decomposed
them into the partial contributions of the functional groups to the excluded volume and solvation
shell terms. The SDA shows that the adamantyl group of 1-adamantanecarboxylic acid is
responsible for the complexation more than its carboxyl group and that the carboxyl has little
contribution to the association process. The SDA results are in good agreement with the
observation made in a recent molecular dynamics simulation. The SDA method can reveal a
microscopic picture for association processes in solution in a number of areas, including protein
stability, and might be a useful tool for rational drug design.

1. Introduction

Association of molecules in solution is one of the most
fundamental phenomena observed in a wide variety of fields
of chemistry, biology, pharmacy, and material science.1-4

This includes such processes of practical importance as
drug-protein binding, micelle formation, and self-assembly
of organic nanotubes. Understanding it from a microscopic
viewpoint is of substantial value, both for basic science and
for control and rational design of important technological
processes. In many cases,3,5,6 the binding affinity of a
macromolecule can be subdivided into contributions from
its essential fragments. A viable strategy of controlling
association is thus to analyze and rationally design the
contribution of each fragment, much as in fragment-based
drug design.7,8 The latter has become an important and
powerful tool for discovery and optimization of new drug

leads. The design and optimization of the ultimate lead
compound is carried out by identifying and optimizing
individual fragments, followed by synthetic linking or
merging them to produce a high-affinity drug lead.

Association in solution is a challenging theoretical problem
because the association free energy is typically determined
by a subtle balance between the direct interaction potential
and the solvent-mediated effective interaction of the as-
sociating macromolecules.9 Association can be assisted not
only by solvent thermodynamic driving forces such as
hydrophobic attraction between hydrophobic fragments of
the associating solutes but also by solvent bridge formation
such as water molecules bridging hydrophilic fragments of
the solutes with hydrogen bonding.10 In order to analyze an
association process, one needs to employ such theory that
properly accounts for the interplay of all these molecular
forces of solvation structure and yields their effect on
solvation thermodynamics.

In the present article, we propose an approach resolving
contributions of functional groups to association in solution
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by using the method of statistical-mechanical, three-
dimensional molecular theory of solvation, also known as
the 3D reference interaction site model (3D-RISM).11-14

Starting with atomistic interaction potentials between solution
species (force field), 3D-RISM yields the solvation structure
in the form of 3D correlation functions of interaction sites
of solvent molecules around a solute (including the 3D
density distribution function). It then analytically yields the
solvation thermodynamics, including the solvation free
energy, solvation entropy and enthalpy, and partial molar
volume, which are expressed as integrals in terms of the 3D
correlation functions. The integrands thus mean the spatial
density of the corresponding thermodynamic quantities,
resolved in three dimensions of the direct space. This 3D
information on solvation structure and thermodynamics
provided by 3D-RISM theory is invaluable for microscopic
understanding of association in solution. In particular, in the
present article we decompose the thermodynamic properties
into two terms coming from the excluded volume and
solvation shell of the solute macromolecule. We further
subdivide them into partial contributions projected onto
spatial fragments corresponding to the functional groups of
the solute. This reveals how the excluded volume and
solvation shell fragments of each functional group contribute
to the association thermodynamics. Below we refer to this
method as spatial decomposition analysis (SDA).

To validate our approach, we apply it to the complexation
of �-cyclodextrin and 1-adamantanecarboxylic acid in water.
Harries et al.15 and Taulier et al.16 have recently investigated
this system by microcalorimetry and volumetric measure-
ments, respectively. Cyclodextrin is a cyclic oligomer of
seven units of R-D-glucose. The glucose units are connected
through glycosidic R-1,4 bonds, and, as a result, the seven
units constitute a doughnut-shaped molecule with a cavity.
The presence of this cavity makes cyclodextrin an attractive
nanostructured unit, a subject of many studies.17-20 We
obtain the change in the solvation free energy upon
the cyclodextrin-adamantane association and analyze the
free energy change upon the association by using SDA to
reveal which fragment is the most responsible for the
association process. Simultaneously, the partial molar volume
change is calculated to see whether the theory and the
molecular model reasonably describe the system under study.
The results demonstrate that SDA can be a helpful tool in
elucidating a microscopic picture of molecular association.

2. Methods

2.1. Molecular Model. The molecular geometry for the
complex of 1-adamantanecarboxylic acid and �-cyclodextrin
was taken from BOGCAB.pdb.21 These coordinates include
two complexes, and we refer to them as complexes A and
B, as shown in Figure 1A. On adding the missing hydrogen
atoms, as shown in Figure 1B and C, we used the resulting
structures, without any further modification, to calculate the
internal energy of the solute system and the solvation
thermodynamics of the complexation.

2.2. Three-Dimensional Molecular Theory of Sol-
vation. The 3D-RISM molecular theory of solvation is a
powerful tool to study solvation thermodynamics of mac-
romolecules in different environments. In this section, we
briefly review the key aspects of the theory which are
relevant to the discussion to follow. The 3D-RISM integral
equation11-14

is coupled with the 3D version of the HNC closure
approximation22

Here, hγ(r) is the 3D total correlation function related to the
3D distribution function gγ(r) ) hγ(r) + 1, which gives the
normalized probability of finding interaction site γ of solvent
molecules at position r around the solute molecule, and cγ(r)
is the 3D direct correlation function which has the asymp-
totics of the solute-solvent site interaction potential: cγ(r)
∼-uγ(r)/(kBT), where kBT is the Boltzmann constant times
the temperature of the solution. The susceptibility of pure
solvent �γ′γ(r) ) ωγ′γ(r) + Fγ′hγ′γ(r) splits up into the
intramolecular distribution function ωγ′γ(r) ) δ(r - lγ′γ)/
(4πlγ′γ

2 ) specifying the geometry of solvent molecules with
site separation lγ′γ and the intermolecular site-site total
correlation function hγ′γ(r) times the solvent site number
density Fγ′. The radial correlations hγ′γ(r) of pure solvent are

Figure 1. Arrangement of the complex of �-cyclodextrin and
1-adamantanecarboxylic acid. (A) shows the complexes A and
B in the arrangement from BOGCAB.pdb.21 (B) and (C)
represent the complexes A and B, respectively, used in the
present calculation after adding the hydrogen atoms.

hγ(r) ) ∑
γ′

∫ dr′ cγ′(r′)�γ′γ(|r - r′|) (1)

gγ(r) ) exp(-uγ(r)

kBT
+ hγ(r) - cγ(r)) (2)
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obtained, in advance of the 3D-RISM calculation, from the
dielectrically consistent RISM integral equation theory
(DRISM)23 coupled with the HNC closure. The convolution
in the 3D-RISM integral eq 1 is calculated by analytically
treating the electrostatic asymptotics of all the correlation
functions (both the 3D and radial ones) and applying the
fast Fourier transform technique (3D-FFT and 1D-FFT) to
the remaining shorter-range part of the correlations.14,24

The solvation free energy of the solute is calculated by
using the 3D extension13,14 of the Singer-Chandler formula25

Under the isochoric condition, the solvation free energy
can be decomposed into the solvation energetic and entropic
parts

In turn, the solvation energy εsolv can be viewed as consisting
of two contributions: one arising from creation of a polarized
cavity (in pure solvent) and the other corresponding to the
energy of embedding the solute molecule into the cavity.26

By taking the derivative of µsolv with respect to temperature,
we can obtain the entropic component -TSsolv.26,27 We
calculated the derivative from the equations obtained by
analytical variation of the 3D-RISM and DRISM equations,
following ref 27.

The partial molar volume Vj is expressed in terms of the
3D correlation function h(r) between solute and solvent as
follows

where �T is the isothermal compressibility of pure solvent
which can be obtained from DRISM theory for the
solvent-solvent correlation functions of pure solvent. In eq
5, kBT�T is the ideal term of partial molar volume and Vj is
the excess term coming from the solute-solvent interaction.
The integration in eqs 3a and 5 is performed with analytically
treating the long-range, electrostatic part of the integrands
and numerically integrating the remaining short-range terms
over the volume of the 3D-FFT supercell. The former appears
due to ion-ion correlations in electrolyte solution and
becomes significant only in the case of finite but relatively
small ionic concentrations with the Debye screening length
comparable to the supercell size.

2.3. Spatial Decomposition Analysis of Thermo-
dynamic Properties. Several studies have been reported to
investigate the thermodynamic properties in subspaces around
a solute molecule.28-33 For instance, Matubayashi et al.34,35

have introduced the hydration shell model to analyze
thermodynamic properties using the Monte Carlo simulation.
We extend their concept to three-dimensional molecular
theory of solvation (3D-RISM). First, we subdivide the 3D
real space of integration in eqs 3a and 5 into two regions:
the excluded volume (EcV) of the solute supramolecule and

the space outside it we will refer to as the solvation shell
region. We estimate the EcV using a water probe of
conventional radius 1.4 Å. In order to obtain the association
properties, we need to consider three systems: (i) isolated
1-adamantanecarboxylic acid (AD), (ii) isolated �-cyclodex-
trin (CD), and (iii) supramolecular complex AD-CD. The
excluded volumes of the molecules AD and CD are hereafter
referred to as EcV(AD) and EcV(CD). For the AD-CD
complex in system iii, we decompose the integration domain
into the sum of EcV(AD) and EcV(CD) and the solvation
shell region of the complex. The same spatial subdivision
of the integration domain is used for the systems (i) AD and
(ii) CD as well, in order to trace changes in the local solvent
environment in the regions EcV(AD) and EcV(CD) upon
the association. Thus, the spaces of EcV(CD) in the system
i and the EcV(AD) in the system ii are occupied by solvent
water molecules which will be excluded by the association
process. Figure 2 schematically illustrates the spatial de-
composition. In the present study, we counted the region of
overlap between the EcV(AD) and EcV(CD) as belonging
to EcV(AD). Next, we perform the integration within each
space to obtain its local thermodynamic properties. For
example, the solvation free energy inside the EcV(AD) in
the system i is calculated as (we drop the superscript “solv”
from µsolv, εsolv, and -TSsolv hereafter)

In this way, the thermodynamic properties obtained by eqs
3a and 5 are broken down into several spaces.

It is worth mentioning about the physical meaning of the
solvation free energy in the EcV. In the case of µ∈EcV(CD)

sys(i)

and µ∈EcV(AD)
sys(ii) , the local space is occupied by water molecules,

and therefore, it is obvious that µ∈EcV is the partial contribu-
tion of water molecules in that element of space to the total
solvation free energy. Then how can we interpret µ∈EcV(AD)

sys(i)

and µ∈EcV(CD)
sys(ii) for the space of EcV holding the solute molecule

inside? A general idea can be obtained by representing both
solute and solvent molecules simply with hard sphere models
and employing the Percus-Yevick closure22 which is
appropriate for hard sphere fluids. We will then get inside
the hard sphere cores: h(r) ) -1 and c(r) ) 0 inside the
EcV. Under this condition, the total solvation free energy is
equivalent to the total solvation entropy -TS. Therefore,
µ∈EcV(AD) is also equivalent to -TS∈EcV(AD) which turns out
to be equal to the thermal energy times the number of bulk
water molecules that can be put inside the empty space of
EcV with the factor of 1/2 (because of switching the
interaction on). In the present study, we use a more realistic
interaction potential (Lennard-Jones plus Coulomb potential
between molecular interaction sites) and the HNC closure.
Therefore, µ∈EcV is strongly perturbed by the direct interaction
between solute and solvent molecules. In effect, µ∈EcV(AD)

sys(i)

calculated as 38 kcal/mol breaks down into -TS∈EcV(AD)
sys(i) and

ε∈EcV(AD)
sys(i) as 43 and -5 kcal/mol, respectively (based on the

computational condition described in the next section).
2.4. Computational Details. We considered the water

solvent with physical density 0.997 g/cm3 and dielectric
constant 78.38 corresponding to the ambient conditions of

µsolv ) kBT ∑
γ
Fγ ∫ dr F (r) (3a)

F (r) ) 1
2

hγ
2(r) - cγ(r) - 1

2
hγ(r)cγ(r) (3b)

µsolv ) εsolv - TSsolv (4)

V ) kBT�T - ∫ dr hγ(r) ) kBT�T + V (5)

µ∈EcV(AD)
sys(i) ) kBT ∑

γ
Fγ ∫V∈EcV(AD)

dr F (r) (6)
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temperature T ) 298.15 K and pressure ) 1 bar. The ideal
term in eq 5 was calculated to be 1.5 cm3/mol by solving
the DRISM-HNC equations for pure water. The 3D-RISM-
HNC equations were solved on a grid of 1283 points in a
cubic supercell of size 64 Å, large enough to accommodate
the complex together with sufficient solvation space around
it. We used the OPLS-AA force field36 for AD and CD and
the SPC/E model37 for water. We have confirmed that the
result does not change significantly with the use of of a finer
grid of 2563 points in the same supercell.

3. Results and Discussion

3.1. Free Energy and Partial Molar Volume
Changes on Complexation. Table 1 shows the free energy
change on the complexation of AD and CD in water for
complexes A and B. The association free energy, ∆A, is
obtained as the sum of the interaction energy Eint between
AD and CD, and the solvation free energy change upon the
association ∆µ. The association free energies were calculated
to be -11 and -13 kcal/mol for the complexes A and B,
respectively, which suggests that AD and CD tend to
aggregate in water. Our theoretical prediction is in agreement
with the calorimetric measurement showing that the associa-
tion free energy between AD and CD is -7.7 kcal/mol.38 A
conformational difference between the two complexes is how
CD holds AD inside the cavity. As can be seen from Figure

1B and C, the adamantyl group of AD in complex A runs
off the edge of the cavity, while that in complex B is inside
the cavity. Recent molecular dynamics simulation on a
copolymer formed by �-cyclodextrin and adamantane
dimers39 has pointed out, based on the MD snapshots, that
the adamantyl group penetrating inside the CD cavities stops
well before their centroids pass the mean-square plane made
by the glycosidic oxygens of CD. Our result that the
association of complex B is more favorable than that of
complex A agrees with that MD observation.

Table 2 gives the partial molar volume (PMV) change on
the complexation along with the experimental data,16,40,41

and the present theory reproduces the PMVs reasonably well.
Interestingly, the theory predicts that two complexes both
of which prefer to aggregate show the opposite trend in the
volume change: the complex A has a positive PMV change
(+8 cm3/mol), whereas the complex B has a negative change
(-11 cm3/mol). The volumetric measurements by Taulier
et al.16 have revealed that the complexation of AD and CD
has the negative PMV change (∼-5 cm3/mol). Therefore,
it is consistent that the 3D-RISM theory predicts that the
association free energy of complex B is more favorable than
that of complex A. We will use the complex B as a

Figure 2. Schematic sketch of the spatial decomposition for systems i-iii (A-C), respectively. The schematic cross section of
the space is also shown in (D-F) for systems i-iii, respectively. The entire space is partitioned into three subspaces, EcV(AD),
EcV(CD), and Shell, in each system. The green lines indicate the boundary of the subspaces.

Table 1. Solvation Free Energies (in kcal/mol) for the
Isolate AD in System i, µsys(i), the Isolated CD in System ii,
µsys(ii), and the Complex in System iii, µsys(iii)a

µsys(i) µsys(ii) µsys(iii) ∆µ Eint ∆A

complex A 22.5 44.6 77.9 10.8 -22.2 -11.4
complex B 24.2 46.0 76.7 6.5 -19.3 -12.8

a The association free energy, ∆A, is calculated as the sum of
the interaction energy Eint between AD and CD and the solvation
free energy change upon the association, ∆µ. The latter is defined
as µsys(iii) - µsys(i) - µsys(ii). Data are for complexes A and B (first
and second rows, respectively).

Table 2. Partial Molar Volume V (in cm3/mol) and Its
Change upon the Complexation of AD and CD, versus
Experimenta

V sys(i) V sys(ii) V sys(iii) ∆V

complex A 134.6 693.6 836.0 7.7
complex B 139.7 696.6 825.6 -10.7
exptl 140.5b 716 ( 2c ∼-5d

a The data are shown for the isolated AD in system i, V sys(i), for
the isolated CD in system ii, V sys(ii), for the complex in system iii,
V sys(iii), and for its change, ∆V, upon the association. ∆V is de-
fined as V sys(iii) - V sys(i) - V sys(ii). Theoretical data are for
complexes A and B (first and second row, respectively), and
experimental results (last row) from references are given in
footnotes. b Reference 40. c Reference 41. d Reference 16.

1726 J. Chem. Theory Comput., Vol. 5, No. 7, 2009 Yamazaki and Kovalenko



representative model of the association process between AD
and CD for further analysis by using SDA in the following
sections.

3.2. Spatial Decomposition Analysis of Solvation
Energy and Free Energy Changes. In this subsection, we
analyze the association solvation free energy ∆µ and the
association free energy ∆A. The SDA yields the following
decompositions of µ:

Each term in eq 7 for each of the systems i-iii has been
compiled in Table 3. In system i, µ∈EcV(CD)

sys(i) and µ∈Shell
sys(i)

contribute to the stabilization of AD in water, which is the
hydration effect on AD. µ∈EcV(CD)

sys(i) has a larger negative value
of µ than that of µ∈Shell

sys(i) , because the water molecules in
EcV(CD) are closer to AD than those in the Shell. On the
other hand, µ∈EcV(AD)

sys(i) contributes to the destabilization of AD
in water. This is because EcV(AD) holds AD inside and
water molecules are excluded from this volume, resulting
in loss of the solvation entropy. In system ii, µ∈Shell

sys(ii) contributes
to the stabilization of CD in water, which is the hydration
effect on CD. µ∈EcV(CD)

sys(ii) contributes to the destabilization of
CD, because EcV(CD) holds CD inside, resulting in loss of
the solvation entropy. It is interesting that µ∈EcV(AD)

sys(ii) has a
positive value of µ, although EcV(AD) includes water
molecules inside (the number of water molecules inside this
volume is calculated to be about 12). This suggests that water
molecules in EcV(AD) unfavorably solvate CD; in other
words, EcV(AD) is hydrophobic. Table 4 presenting the
decomposition of solvation entropy also confirms that by
showing -TS∈EcV(AD)

sys(ii) has a large positive value. EcV(AD)
in system ii covers the cavity space of CD, and there has
been a theoretical observation that the cavity is hydropho-
bic.42 The SDA conclusion is quite consistent with this
observation. In system iii, only µ∈Shell

sys(iii) stabilizes the complex
in water (hydration effect), and the rest of the terms
destabilize the association since they include the cores of
the solute molecules.

The association solvation free energy ∆µ is decomposed
by SDA as

where

and has been compiled in the last row in Table 3. By
rearranging eq 9 to eq 10, and eq 11 to eq 12, we can
decompose ∆µ∈EcV into two parts: the change in the volume
space which holds solute molecules inside (first term in rhs
of eqs 10 and 12), and the change in the hydration (second
term in rhs of eqs 10 and 12).

On the association, AD occupies the cavity space of CD
and repels water molecules from the cavity. This can be seen
as -µ∈EcV(AD)

sys(ii) in eq 10. -µ∈EcV(AD)
sys(ii) ) -22 kcal/mol favors

the association, because water molecules inside the hydro-
phobic cavity of CD in system ii favor to be excluded from
the cavity. Simultaneously, CD dehydrates AD, which can
be seen as -µ∈EcV(CD)

sys(i) in eq 12. In contrast to -µ∈EcV(AD)
sys(ii) ,

the term -µ∈EcV(CD)
sys(i) ) +9 kcal/mol does not favor the

association because water molecules in EcV(CD) in system
i interact preferably with AD.

It is a little complicated to interpret the change in the
volume space which holds solute molecules inside (first term
in rhs of eqs 10 and 12). First, let us discuss the value of
µ∈EcV(CD)

sys(iii) - µ∈EcV(CD)
sys(ii) to see what happens with EcV(CD) when

AD occupies the CD cavity. Because AD comes very close
to EcV(CD), the interaction potential felt by water molecules
in EcV(CD) changes, which changes the excluded volume
for water molecules (related to the solvation entropy change)
and changes the interaction between CD and water molecules
(related to solvation energy change). As a result, µ∈EcV(CD)

sys(iii)

- µ∈EcV(CD)
sys(ii) turns out to be -2 kcal/mol, and its thermody-

namic decomposition into the energetic and entropic parts
of the change gives ε∈EcV(CD)

sys(iii) - ε∈EcV(CD)
sys(ii) ) -1 kcal/mol and

- TS∈EcV(CD)
sys(iii) - (-TS∈EcV(CD)

sys(ii) ) ) -1 kcal/mol. On the other
hand, what happens with EcV(AD) may be simpler than with
EcV(CD). The SDA gives us that µ∈EcV(AD)

sys(iii) - µ∈EcV(AD)
sys(i) )

+20 kcal/mol, and the thermodynamic decomposition shows
that the energetic and entropic parts are ε∈EcV(AD)

sys(iii) - ε∈EcV(AD)
sys(i)

) -5 kcal/mol and -TS ∈EcV(AD)
sys(iii) - (-TS∈EcV(AD)

sys(i) ) ) +25
kcal/mol. This suggests that EcV(AD) in system iii excludes
water molecules more than that in system i, and that
EcV(AD) in system iii has a stronger repulsive interaction
for water molecules. This is related to the fact that EcV(AD)
in system iii includes a part of CD and that EcV(AD) in
system i does not include it (see Figure 2A, C, D, and F).

Table 3. SDA of the Solvation Free Energy µ and Its
Change upon the Associationa

µ∈EcV(AD) µ∈EcV(CD) µ∈Shell µ (total)

system i 37.928 -9.1112 -4.6353 24.18
system ii 21.984 68.286 -44.288 45.98
system iii 58.148 66.531 -48.022 76.66
∆ -1.76 7.36 0.901 6.5

a The last column shows the total solvation free energy. ∆ in
the last row represents the association property defined as system
iii - system i - system ii.

Table 4. SDA of the Solvation Entropy -TS and Its
Change upon the Associationa

- TS∈EcV(AD) - TS∈EcV(CD) - TS∈Shell - TS (total)

system i 43.489 -0.3060 -0.8023 42.38
system ii 35.672 188.306 -2.8900 221.09
system iii 68.340 187.640 -2.6974 253.28
∆ -10.8 -0.360 0.995 -10.2

a The last column shows the total solvation entropy. ∆ in the
last row represents the association property defined as system iii
- system i - system ii.

µ ) µ∈EcV(AD) + µ∈EcV(CD) + µ∈Shell (7)

∆µ ) ∆µ∈EcV(AD) + ∆µ∈EcV(CD) + ∆µ∈Shell (8)

∆µ∈EcV(AD) ) µ∈EcV(AD)
sys(iii) - (µ∈EcV(AD)

sys(i) + µ∈EcV(AD)
sys(ii) )

(9)

) (µ∈EcV(AD)
sys(iii) - µ∈EcV(AD)

sys(i) ) + (- µ∈EcV(AD)
sys(ii) ) (10)

∆µ∈EcV(CD) ) µ∈EcV(CD)
sys(iii) - (µ∈EcV(CD)

sys(i) + µ∈EcV(CD)
sys(ii) )

(11)

) (µ∈EcV(CD)
sys(iii) - µ∈EcV(CD)

sys(ii) ) + (- µ∈EcV(CD)
sys(i) ) (12)

∆µ∈Shell ) µ∈Shell
sys(iii) - (µ∈Shell

sys(i) + µ∈Shell
sys(ii) ) (13)
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In this way, ∆µ∈EcV is determined by the balance between
the change in the volume space holding solute molecules
inside and the change in the hydration. We found that the
latter is slightly dominant in the present association process.
Therefore, we can assign ∆µ∈EcV(AD) and ∆µ∈EcV(CD) as the
changes in the hydration upon the association. By adding
the interaction energy between AD and CD, we finally obtain
the SDA of association free energy as shown in Figure 3. In
order to calculate ∆A∈EcV(AD) and ∆A∈EcV(CD), we divided Eint

by 2 (according to switching the interaction on) and added
them to ∆µ∈EcV(AD) and ∆µ∈EcV(CD), respectively. We can see
from the figure that the dehydration from the cavity,
∆µ∈EcV(AD), and the dehydration around AD, ∆µ∈EcV(CD),
cancel each other. As a result of the balance, ∆µ turns out
to contribute to destabilization of association. On the other
hand, the interaction energy strongly favors the aggregation,
and in total, the association in water takes place. Our
conclusion is consistent with the experimental observations
that the complex is predominantly stabilized by strong
host-guest van der Waals interactions.16,43-45

By further decomposing EcV(AD) into the carboxyl and
adamantyl groups (referred to as EcV(AD:1) and EcV(AD:
2), respectively) as shown in Figure 4, we can estimate the
contributions of these functional groups to ∆A. The result is
compiled in Table 5, along with its thermodynamic decom-

position. It is interesting that the SDA shows that µ∈EcV(AD:1)
sys(i)

has a negative value, although µ∈EcV(AD)
sys(i) given by the sum

of µ∈EcV(AD:1)
sys(i) and µ∈EcV(AD:2)

sys(i) has a positive value, as we have
seen above. Its energetic component, ε∈EcV(AD:1)

sys(i) , has a large
negative value because the carbonyl group is a polar group
that favorably interacts with water molecules. Its magnitude
is larger than that of -TS∈EcV(AD:1)

sys(i) , and µ∈EcV(AD:1)
sys(i) turns out

to have a favorable contribution to the stabilization of AD
in water. The rest of the µ∈EcV(AD) values in Table 5 are all
positive, which can be explained by the EcV holding a solute
molecule inside and by the hydrophobicity of the cavity, as
discussed above. The SDA predicts the solvation terms as
∆µ∈EcV(AD:1) ) +1.1 kcal/mol and ∆µ∈EcV(AD:2) ) -2.9 kcal/
mol, whereas the interaction energies between AD:1 and CD
and between AD:2 and CD are calculated as -5.4 and -13.9
kcal/mol, respectively. By adding the interaction energies
divided by 2 to the ∆µs, we obtain that ∆A∈EcV(AD:1) ) -1.6
kcal/mol and ∆A∈EcV(AD:2) ) -12.6 kcal/mol, showing that
the adamantyl group is largely responsible for the complex-
ation and that the carboxyl group little influences it. From
the experimental data, it also has been suggested39 that the
polar residue bonded to the adamantyl group scarcely
influences the host-guest interaction. Our analysis is in good
agreement with this observation. The present results thus
show that SDA is a useful tool for fragment-based analysis
to elucidate a molecular picture of association processes in
solution.

3.3. Spatial Decomposition Analysis of Partial Molar
Volume Change. SDA is applicable not only to the free
energy but also to any thermodynamic property which can
be obtained from the distribution functions between solute
and solvent. For illustration, we apply the SDA to the excess
term of PMV and its change upon the association. In the
present case, the ideal term of PMV is relatively small,
compared to the whole PMV and its change. Therefore we
can consider that the excess term is the primary contributor
to the association process. The SDA of PMV is in fact very
similar to the SDA of µ, and below we just briefly go through
the results to give the relevant interpretations.

The SDA of the excess term in eq 5 yields the following
decomposition:

The values of all the components are compiled in Table 6.
As we have seen in Table 3, the values Vj∈EcV(CD)

sys(i) , Vj∈Shell
sys(i) ,

Vj∈Shell
sys(ii) , and Vj∈Shell

sys(iii) represent the hydration effect on the

Figure 3. Spatial decomposition of the association free
energy ∆A (in kcal/mol). The interaction energy between AD
and CD, Eint, is divided by 2 and added to ∆µ∈EcV(AD) and
∆µ∈EcV(CD), respectively. 1/2Eint, ∆µ∈EcV(AD), and ∆A∈EcV(AD) )
1/2Eint + ∆µ∈EcV(AD) are given in the first column from left,
marked as EcV(AD). 1/2Eint, ∆µ∈EcV(CD), and ∆A∈EcV(CD) )
1/2Eint + ∆µ∈EcV(CD) are given in the second column from left,
marked as EcV(CD). ∆A∈Shell (the third column from left) is
defined as being equivalent to ∆µ∈Shell. The last column
marked as total is the sum of these three spatial fragments.

Figure 4. Schematic representation of the spatial decompo-
sition of EcV(AD) into the carboxyl (EcV(AD:1)) and adamantyl
(EcV(AD:2)) groups.

Table 5. SDA of the Solvation Free Energy µ∈EcV(AD) and
Its Thermodynamic Decomposition into the Solvation
Energy Ε and the Solvation Entropy -TS, along with Their
Changes upon the Associationa

µ∈EcV(AD:1) µ∈EcV(AD:2)

ε - TS total ε - TS total

system i -12.032 9.9536 -2.079 6.4726 33.535 40.01
system ii -2.9894 5.0261 2.037 -10.699 30.646 19.95
system iii -12.263 13.338 1.075 2.0715 55.002 57.07
∆ 2.76 -1.64 1.1 6.30 -9.18 -2.9

a ∆ in the last row represents the association property defined
as system iii - system i - system ii.

V ) V∈EcV(AD) + V∈EcV(CD) + V∈Shell (14)
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PMV and contribute to the decrease of PMV, which is the
so-called electrostriction effect. The term Vj∈EcV(AD)

sys(ii) is also
the hydration effect on the PMV; however, this term
contributes to the increase of PMV. The positive value of
PMV is caused by the fact that the distribution of water
molecules in EcV(AD) is less than that in the bulk (g(r) <
1), as can be seen from eq 5. This is the manifestation of
hydrophobicity inside the CD cavity, which is consistent with
the discussion about µ∈EcV(AD)

sys(ii) in the previous section. The
terms Vj∈EcV(AD)

sys(i) , Vj∈EcV(CD)
sys(ii) , Vj∈EcV(AD)

sys(iii) , and Vj∈EcV(CD)
sys(iii) are

essentially the geometrical volume of EcV of the molecules,
being perturbed by the interaction between AD and CD.
From the SDA of the PMV change upon the association,
we can see a large negative change of -62 cm3/mol in
EcV(AD) and a large positive change of +51 cm3/mol in
EcV(CD). The former is due to the fact that AD occupies
the CD cavity and decreases the cavity volume, accompanied
by desolvation of water molecules from the cavity. The latter
is due to the desolvation of water molecules around AD.
Much as for µ, we found that the PMV change is determined
by the balance between the two dehydration events. The
magnitude of ∆Vj∈EcV(AD) is larger than that of ∆Vj∈EcV(CD),
which suggests that the dehydration from the CD cavity is
the predominant factor for the PMV change, and as a result,
the PMV change becomes negative, as has been observed
in experiment.16

4. Concluding Remarks

In the present article, we have presented a method to analyze
the association process by decomposing the thermodynamic
property into several three-dimensional spaces, based on
three-dimensional molecular theory of solvation, also known
as 3D-RISM. We refer to this method as spatial decomposi-
tion analysis (SDA). In the present SDA, we divided the
thermodynamic property into two spaces, the space in-
side the excluded volume of solute molecules and the outside
space. The thermodynamic property projected onto the
excluded volume is further divided into a few fragments and
is discussed to see how each fragment contributes to the
thermodynamic property change upon the association. To
demonstrate the SDA, we applied the method to the
complexation of �-cyclodextrin (CD) and 1-adamantanecar-
boxylic acid (AD) in water. By applying the SDA to the
association free energy, we found that the complexation is
determined by the balance between the interaction between
the two molecules and the dehydration contributions from
the CD cavity and around AD upon the association. We also
found that the adamantyl group of the 1-adamantanecar-

boxylic acid is largely responsible for the association,
whereas the carboxyl group makes a small contribution to
the association. In addition, by applying the SDA to the
change of the partial molar volume upon the association,
we found that the sign of the change is determined by the
same balance between the dehydration terms. Our analysis
is in good agreement with the observations in the recent study
on a copolymer formed by �-cyclodextrin and adamantane
dimers by using molecular dynamics simulation.39 This
suggests that the SDA method can be used to elucidate a
microscopic picture of a wide range of host-guest associa-
tion processes in solution.

There are several ways of partitioning the solvation
thermodynamics into spatially resolved contributions in the
SDA method. For example, the solvation shell region can
be further decomposed into the volume parts corresponding
to fragments of the solute molecules. This way of partitioning
the solvation shell is necessary for associating systems with
charged molecules. Although the contribution from the shell
region is relatively small in the present case, our preliminary
calculations show the possibility of a large contribution to
the association process in such systems. SDA would also be
particularly useful to study the thermodynamic stability of
proteins so as to see which fragment (or residue) of the
protein contributes most to its stability. This might render
SDA as a useful tool for rational drug design.
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Abstract: We present an approach for fully numerical, all-electron solutions of the optimized
effective potential equation within Kohn-Sham density functional theory for diatomic molecules.
The approach is based on a real-space, prolate-spheroidal coordinate grid for solving the all-
electron Kohn-Sham equations and an iterative scheme for solving the optimized effective
potential equation. The accuracy of this method is demonstrated by comparison with previously
reported calculations. New fully numerical benchmark results for selected diatomic molecules
are provided.

1. Introduction

The Kohn-Sham formulation of density functional theory
(DFT)1-3 is a widely used approach for calculating the
electronic structure of materials from first principles. In
Kohn-Sham DFT, the original interacting-electron Schrö-
dinger equation is mapped into an equivalent noninteracting
problem. This leads to effective one-particle equations which,
in the spin-polarized form4 are

where σ is a spin index, �iσ and εiσ are the ith Kohn-Sham
orbital and energy, respectively, Vion is the ion-electron
attraction potential, VH is the Hartree potential, and Vxc,σ is
the exchange-correlation potential that represents all nonclas-
sical electron interactions (hartree atomic units are used
throughout unless otherwise stated). The exchange-correla-
tion potential is the functional derivative of the exchange-
correlation energy (which is a functional of the charge
density) with respect to the (spin-polarized) charge density,
Fσ(r)

Although DFT is exact in principle, the exact form of
Exc[Fv(r),FV(r)] is unknown, and in practice approximate forms
must be used.

Orbital-dependent functionals are exchange-correlation
functionals that use Kohn-Sham orbitals, themselves being
functionals of the density, as ingredients in functional
construction. Such functionals are currently considered to
be one of the most promising avenues in modern DFT, as
they hold the promise of overcoming some of the more
serious deficiencies of exchange-correlation functionals that
are explicit functionals of the density.5 A major difficulty,
however, with implicit density functionals for the exchange-
correlation energy is that a direct derivative for determining
the exchange-correlation potential is not available. Instead,
chain-rule arguments lead to an integro-differential equation,
generally known as the optimized effective potential (OEP)
equation.5-12 There are several equivalent formulations for
the OEP equation; here we use the (relatively) simple
form11,13,14

where Nσ is the number of occupied states in the σ spin channel.
Here ψiσ*(r) are called “orbital shifts” and are given by
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(-∇2

2
+ Vion(r) + VH(r) + Vxc,σ(r))�iσ(r) ) εiσ�iσ(r)

(1)

Vxc,σ(r) ≡ δ
δFσ(r)

Exc[Fv(r), FV(r)] (2)

Sσ(r) ≡ ∑
i)1

Nσ

ψiσ* (r)�iσ(r) + c.c. ) 0 (3)
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where

Because of the complexity of the OEP equation, many ap-
proximate schemes for determining Vxc,σ

OEP(r) have been sug-
gested.5 Some of them, e.g., the Krieger, Li, and Iafrate (KLI)
approximation,15 or the common energy denominator ap-
proximation (CEDA)16 (which is equivalent to the localized
Hartree-Fock (LHF) approach),17 often provide an excellent
approximation to the correct solution of the OEP equation.
Nevertheless, it has been shown that, for various properties,
use of potentials other than the full OEP may lead to results
that are significantly different quantitatively18-21 or even
qualitatively22,23 from the full OEP solution. This clearly
establishes the need for accurate solutions of the OEP equation.

Typically, the Kohn-Sham equations are solved either by
employing pseudopotentials (usually in conjunction with a
plane-wave basis or a real-space grid), or by using atomic
basis sets. Unfortunately, the use of either approach together
with the OEP equation raises new difficulties and contro-
versies:5 OEP-compatible pseudopotentials require special
care in their construction if spurious “potential tails” are to
be avoided,24-27 and even then questions as to the importance
of core-valence interaction may be raised.28 Use of localized
basis sets may result in numerical inaccuracies29 and an ill-
defined algebraic problem, an issue whose resolution has
recently attracted much discussion.5,30-36

In light of the above difficulties, it is highly desirable to
obtain benchmark OEP calculations, i.e., “fully numerical”
ones, where the only approximation beyond unavoidable
roundoff errors is the choice of the exchange-correlation
functional. Such calculations could be used for development
and testing of new orbital-dependent functionals, as well as
for objective testing of various approximate OEP solution
schemes. To the best of our knowledge, prior to the present
work this was achieved only for single atoms,7,11,14,37,38 an
unsatisfactory state of affairs because chemical bonds cannot
be examined. Here, we present a real-space, prolate-
spheroidal coordinate39 based approach for fully numerical,
all-electron solutions of the OEP equation for diatomic
molecules. In the following, we explain the prolate-spheroidal
real-space grid and the main principles of the numerical
approach. We then demonstrate the accuracy of the proposed
scheme via both OEP and non-OEP calculations for several
chemical systems and functionals.

2. Numerical Approach

Following Becke,39 Laaksonen and co-workers,40,41 Grabo
et al.,10 and Engel et al.42,43 we use a real-space grid based
on prolate-spheroidal coordinates. These coordinates are
useful for describing a system with two atomic centers

because the grid is very dense near the two centers, but
increasingly coarse with increasing distance from the centers.
This property of the grid is most helpful for all-electron
calculations because it allows better sampling near the atoms
where the ionic potential is singular and the orbitals oscillate
rapidly.

For two centers at A(x ) 0, y ) 0, z ) -R/2) and
B(x ) 0, y ) 0, z ) R/2), the prolate-spheroidal coordinates
(µ, ν, φ) ∈ [0, ∞] × [0, π] × [0, 2π] are defined by

The geometrical meaning of eq 6 is apparent from the inverse
transformation

where rA(r) and rB(r) are the Euclidean distances of a general
point (x, y, z) from the centers A and B, respectively, and φ

is the angle of rotation around the interatomic axis, i.e., the
z-axis. At any constant-φ plane, constant-µ and constant-ν
lines correspond to (half) ellipses and hyperbolas, respec-
tively, as shown in Figure 1 for both φ ) 0 and φ ) π.

Due to the cylindrical symmetry of diatomic molecules,
the angle φ can be treated analytically, and the problem is
effectively reduced to a two-dimensional one. Formally, this
means that all physical entities (e.g., charge density, poten-
tials, squared absolute wave functions, etc.) are φ-indepen-
dent and that the one-particle wave functions are of the form

ψiσ*(r) )

- ∑
j*i

∞ ∫�iσ*(r′)[uiσ
xc(r′) - Vxc,σ

OEP(r′)]�jσ(r′) d3r'

εiσ - εjσ
�jσ*(r), εiσ * εjσ

(4)

uiσ
xc(r) ) 1

�iσ* (r)

δExc[{�}]

δ�iσ(r)
(5)

Figure 1. Contour plot of a hypothetical charge density of a
heteronuclear dimer, sampled on a prolate-spheroidal coor-
dinate grid. Here, the distance between the two centers is R
) 1.5 and grid parameters are Nµ ) 22, Nν ) 20, and µmax )
2.75. For clarity, both φ ) 0 and φ ) π planes are shown,
corresponding to positive and negative x values, respectively.
During calculation only the plane φ ) 0 is explicitly considered.

x ) R
2

sinh(µ) sin(ν) cos(φ),

y ) R
2

sinh(µ) sin(ν) sin(φ),

z ) R
2

cosh(µ) cos(ν)

(6)

µ ) cosh-1(rA + rB

R ), ν ) cos-1(rA - rB

R ),

φ ) tan-1(y
x) (7)

�(µ, ν, φ) ) �(µ, ν, 0)eimφ m ) 0, ( 1, ( 2, ...
(8)
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where m is an integer corresponding to the quantum number
of angular momentum with respect to the interatomic axis.

Our numerical approach is based on self-consistent solu-
tions of the Kohn-Sham and OEP equations on the uniform,
two-dimensional (µ, ν) grid, using the high-order finite
difference approach,44,45 in which several neighbors around
each point are used for approximating derivatives. In the
context of pseudopotential-based calculations, the high-order
finite difference approach has evolved into a powerful
software suite, known as PARSEC (pseudopotential algo-
rithm for real-space electronic structure calculations),46-48

which has found many successful applications to large-scale
electronic structure studies in general48 and to OEP solutions
in particular.20,22,23 This offers a natural starting point for
the present numerical approach, which we implemented in
a related yet independent code we call DARSEC (diatomic
all-electron real-space electronic structure calculations).
Because the high-order finite difference approach in general
has been discussed in detail elsewhere, here we naturally
focus on aspects that are unique to the prolate-spheroidal
grid and/or to the solution of the OEP equation.

The main issue that requires careful attention on a two-
dimensional prolate-spheroidal grid is the evaluation of the
Laplacian operator. Analytically, after elimination of the φ

coordinate using eq 8, the Laplacian takes the form

where � ) cosh(µ) and η ) cos(ν). One complication is
that eq 9 implies that a different Laplacian, ∆m, and ergo a
different Hamiltonian, Hm, is to be operated on functions
with different |m| values. Fortunately, this is not a prohibitive
complication in practice. According to eq 9 the Kohn-Sham
Hamiltonian, Hm, is given by

Denoting the lowest energy eigenvalue and orbital, per a
given m, by εm° and �m° , respectively, we obtain from eq 10
and the variational principle that for |m̃| > |m|

Equation 11 shows that the lowest eigenvalue of Hm is lower
than the lowest eigenvalue of Hm̃. This means that even
though there are an infinite number of |m| values, it suffices
to consider a finite (and typically small) set of them, starting
from m ) 0 and onward, in order to compute all the filled
states with no risk of missing any such states. In each self-
consistent cycle, all relevant Hamiltonians Hm are diagonal-

ized and the density constructed from the solutions of all of
them is used to update the Hamiltonians.

A second complication associated with the Laplacian of
eq 9 is that it is singular along the µ ) 0 and ν ) 0, π
boundaries of the (µ, ν) domain, which together make up
the interatomic axis in real space. This can be handled in
two ways. One approach, employed by Kobus et al.,41 is
that orbital values on this axis are to be interpolated. In fact
such interpolation is necessary only for m ) 0, because for
all |m| > 0 all orbitals vanish identically on the interatomic
axis. Alternatively, one can shift the grid by half a grid
spacing in both the µ and the ν directions, such that no grid
points are found on the singular line. We implemented both
approaches and did not observe pronounced differences in
performance between them.

The third complication associated with the Laplacian of
eq 9 is that it is not Hermitian (see also Becke).39 This makes
the employment of algorithms that assume Hermiticity
problematic. There are several ways to mitigate this problem
considerably and a detailed discussion is provided in Ap-
pendix A.

We now briefly review the calculation of the various
potential terms in the Kohn-Sham eq 1. The ionic potential
is simply taken as the exact one, i.e.,

where ZA and ZB are the atomic numbers of atoms A and B,
respectively, and with rA(r) and rB(r) defined after eq 7.
Solutions of a single atom are also possible, by setting ZA

(or ZB) to zero. The Hartree potential, VH(r), is obtained from
a solution of the Poisson equation ∆mVH(r) ) -4πF(r) (with
m ) 0 due to the cylindrical symmetry of VH(r)) using the
conjugate gradient method.49 Because the grid is typically
quite small, boundary conditions are evaluated using direct
integration. As for the exchange-correlation potential, in
exact-exchange calculations the terms Pij(r) ) ∫ (�iσ*(r′)�jσ(r′))/
(|r - r′|) d3r′ are needed for constructing uiσ

xc(r) of eq 5. They
are evaluated by solving Poisson-like equations, with Fij(r)
) �iσ*(r)�jσ(r) on the right-hand side instead of F(r), using
the same method. In this case a value of m ) |mi - mj| has
to be used for applying the Laplacian ∆m. Finally, the OEP
equation is solved using the “S-iteration” method.14,50 Briefly,
the exchange-correlation potential is updated iteratively
according to

with Sσ(r) defined in eq 3 and where c is a real positive
parameter that is manually adjusted for optimal convergence.
Details regarding the calculation of the orbital shifts defined
in eq 4, that are needed to evaluate Sσ(r), are given in
Appendix B.

Because all potentials are strictly local, they only provide
diagonal entries on the (µ, ν) Hamiltonian matrix. Hence,
just like in PARSEC, the Hamiltonian is extremely sparse.
Here, off-diagonal elements, and very few of them at that,
are introduced only by the matrix representation of the
Laplacian (the Hamiltonian here is even sparser than that of

∆m(µ, ν) ) 4

R2(�2 - η2)[ ∂
2

∂µ2
+ �

√�2 - 1

∂

∂µ
+ ∂

2

∂ν2
+

η

√1 - η2

∂

∂ν
- m2( 1

�2 - 1
+ 1

1 - η2)] (9)

Hm ) H0 + m2f (µ, ν),

f (µ, ν) ) 2

R2(cosh2(µ) - cos2(ν))
×

( 1

cosh2(µ) - 1
+ 1

1 - cos2(ν)) > 0

∀µ g 0, π g ν g 0 (10)

εm̃° ) 〈�m̃° |Hm̃|�m̃° 〉 > 〈�m̃° |Hm|�m̃° 〉 g min�〈�|Hm|�〉
) 〈�m° |Hm|�m° 〉 ) εm° (11)

Vion(r) ) -
ZA

rA(r)
-

ZB

rB(r)
(12)

Vxc,σnew

OEP (r) ) Vxc,σold

OEP (r) + cSσ(r) (13)
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PARSEC due to the absence of a nonlocal pseudopotential
term). The full Hamiltonian matrix is therefore never
computed nor stored. Instead, the operation of the Hamil-
tonian matrix on an orbital is evaluated by explicitly
considering only its diagonal values and the high-order finite
difference expansion coefficients, which is very efficient
computationally.

A different issue which we found to be of importance is
the numerical evaluation of the various integrals arising in
the computation. We used the high-order integration scheme
recommended by Kobus et al.,41 which is based on the seven-
point Newton-Cotes integration formula, i.e.,

This integration scheme facilitates convergence with grids
that are significantly sparser than those needed using simple
summation and allows for huge savings in both computer
time and memory. Specifically, we used the expression:

where J (µ, ν, φ) is the volume element, given by

and c̃i are based on the Newton-Cotes coefficients ci of eq
14.51 Obviously this means that the number of grid points
in the µ and ν directions must be of the form of 6n + 1,
where n is an integer.

We conclude this section with some practical comments
on the DARSEC code in which the above concepts are
implemented. Like PARSEC, DARSEC is a modern, mas-
sively parallel (using the message passing interface protocol)
Fortran 90/95 code. Currently, DARSEC uses the ARPACK
software package52 to diagonalize the Kohn-Sham Hamil-
tonians, but the approach is generic, and other solvers can
easily be used (because the Laplacian matrix is real but not
symmetic, we use the nonsymmetric, real ARPACK solver).
Similarly, below we provide examples based on local density
approximation (LDA) and exact-exchange, but the code is
designed such that any orbital-dependent functional can be
combined with OEP in a straightforward manner. For the
systems considered below, DARSEC requires a few minutes
to several hours and a modest few hundreds MB of memory
for a complete LDA or exchange-only KLI solution with an
accuracy of 10-5 hartree in total energies and eigenvalues.

As expected, in non-OEP calculations the majority of the
computation time is devoted to the iterative diagonalization
process. Our empirical experience with ARPACK shows that
using a relatively large amount of Arnoldi basis vectors (of
the order of thousands) usually decreases the run time

dramatically (by up to 2 orders of magnitudes). We attribute
this primarily to the above-discussed singularity of the
Laplacian operator along the interatomic axis. A numerical
convergence of the order of 10-5 hartree is usually achieved
by less than 15 self-consistent iterations. This number can
be reduced significantly, typically to less than five iterations,
by using interpolated converged results from a sparser grid
as a starting point for the denser one. For OEP calculations,
the required run time for achieving comparable accuracies
increases, possibly up to several days, for two main reasons:
(a) OEP calculations are typically slower to converge and
may require tens of self-consistent iterations; (b) the orbital
shifts do not always converge smoothly, and different starting
vectors for the conjugate gradient computation of the orbital
shifts (see Appendix B) may be needed.

In Table 1 we provide convergence details for the
representative case of the CO molecule with the experimental
equilibrium bond length of 2.132 au,53 studied using the KLI
approximation to the exact-exchange functional. We focus
on the convergence of the total energy with respect to the
sparsity of the grid (number of grid points) and its
size (determined by µmax). Clearly convergence to 10-5

hartree was achieved for the largest grid (for which the run
time was of the order of several hours), and convergence to
10-3 hartree was achieved for a very modest grid indeed. It
is our general experience, for this and other systems, that
the convergence rate of OEP calculations with increasing
grid size is similar.

3. Results

In this section we present detailed numerical results obtained
using the above-explained approach. Calculations were per-
formed with the LDA54,55 or with exact-exchange (and no
correlation). For the latter functional, the exchange-potential was
given either by the KLI approximation (xKLI) or by a full OEP
calculation (xOEP). First, we reproduce known results so as to
verify our methodology. Then, we provide new fully numerical
exact-exchange OEP results for selected diatomic molecules.
All calculations were converged to at least 10-4 hartree in the
total energy (note that the eigenvalues may exhibit larger errors),

∫x1

x7 f(x) dx = ∑
i)1

7

cifih with c1 ) c7 ) 41
140

,

c2 ) c6 ) 216
140

, c3 ) c5 ) 27
140

, c4 ) 272
140

(14)

∫ f(µ, ν) d3r ) ∫0

2π
dφ∫0

∞
dµ∫0

π
dν J (µ, ν)f(µ, ν)

= 2π ∑
i)1

Nµ

∑
j)1

Nν

c̃ic̃j J (µi, νj)f(µi, νj)hµhν

(15)

J (µ, ν, φ) ) (R
2 )3

(cosh2(µ) - cos2(ν)) sinh(µ) sin(ν)

(16)

Table 1. Total Energy, in hartree, for the CO Molecule,
Calculated with Grids of Increasing Density and Sizea

COsxKLI

{Nµ, Nν} µmax total energy ∆E NA

{61, 43} 3.86 -112.78377 1300
{85, 55} 3.87 -112.78315 0.00062 1300
{109, 73} 3.98 -112.78320 -0.00005 1600
{133, 103} 4.18 -112.783222 -0.00002 1800
{151, 121} 4.39 -112.783223 -0.000001 2300
Engel et al.b -112.78340

a Nµ, Nν, number of grid points along the µ, ν directions,
respectively; µmax, maximum value of µ used in calculation; ∆E,
difference between current total energy and the total energy
obtained by the previous coarser grid, in hartree; NA, number of
Arnoldi basis vectors used during diagonalization. b For
comparison the xKLI total energy of CO as calculated by Engel et
al. (ref 43) using a similar prolate-spheroidal coordinate grid and
bond length of 2.1316 au is also provided.
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with the first unconverged digit placed in parentheses. Numer-
ical parameters for all calculations presented below are given
in Table 2.

For verifying our solutions to the Kohn-Sham equation,
we calculated the electronic structures of H2, BH, and Li2

using the LDA. The resulting total energies and highest
occupied molecular orbital (HOMO) energies are given in
Table 3 and are compared to the all-electron calculations of
Grabo et al.,10 performed on a similar prolate-spheroidal grid.
All diatomic calculations were performed using the same
bond lengths as used by Grabo et al.10 The comparison
immediately confirms that the results do indeed agree to
within the stated accuracy of 0.1 mhartree.

As a first step toward verifying our all-electron xKLI and
xOEP, we performed calculations for the one-electron
systems of H and H2

+, for which xKLI and xOEP are
identical and should yield the exact results. Indeed we found
that the two solutions always agreed on all converged digits.
Table 4 compares DARSEC calculations for the first 14
energy levels (n ) 1-3) of a single H atom with the
analytical values, demonstrating excellent accuracy. Table
5 shows a similar comparison, for H2

+, of DARSEC values
with analytical values56,57 and with numerical Hartree-Fock
(HF) values (also exact for single-electron systems),58 at the
equilibrium bond length of 2.0 au. Note that the “analytical”
values are not always correct to the last digit reported,
because of numerical approximations used in the algebraic
solutions,56 whereas the results of Laaksonen et al.58 were
shown to be correct to at least the ninth digit, via comparison

to previous work59 (except for the 1φu, 2δg, and 3πg orbitals,
for which no such comparison was available).

As a second step in the evaluation of our all-electron xKLI
and xOEP schemes, we compare calculations for polyelectron
atoms with similar calculations performed on radial grids.
Table 6 shows total energies of He, Li, and Be atoms,
compared to the data of Grabo et al.11 Selected eigenvalues
for Li60 and Be are given in Tables 7 and 8, respectively. In
Table 7 the Li eigenvalues are compared to those obtained
by Engel and Vosko,37 as well as to independent calculations
we performed using a 1D radial code.14 In Table 8, the Be
eigenvalues are compared to those obtained by Kümmel and
Perdew.14 Once again, an accuracy of 0.1 mhartree is
achieved throughout. Furthermore, Tables 7 and 8 also

Table 2. Numerical Parameters Used in This Worka

system RAB [au] Nµ Nν µmax (rsa [au]) S c

xcLDA:
H2 1.446 85 85 4.22 (24.71)
BH 2.373 85 85 4.32 (44.79)
Li2 5.120 85 85 4.32 (96.65)

xKLI and xOEP:
H 0.5 37 25 6.37 (73.31) 1 1.0
H2

+ 2.0 31 31 5.39 (109.35) 1 1.0
He 0.5 61 61 4.43 (28.68) 1 5.0
Li 0.5 61 61 5.43 (28.68) 100 3.0
Be 0.5 73 55 5.16 (21.87) 200 3.5
LiH 3.015 109 91 3.82 (34.38) 100 7.2
BH 2.336 79 79 4.15 (37.00) 200 5.5
Li2 5.051 109 91 3.44 (39.37) 200 6.5
CO 2.132 109 73 3.98 (28.56) 100 0.7

a RAB, interatomic distance; Nµ, Nν, number of grid points along
the µ, ν directions; µmax, maximum value of µ; rsa, length of the
semiminor axis; S (OEP calculations only), number of S-iterations
used during the convergence process; c (OEP calculations only),
typical value of convergence parameter used in the S-iterations,
see eq 13.

Table 3. Ground-State Total Energies and HOMO
Eigenvalues, in hartree, for H2, BH, and Li2, Calculated
with LDA

total energy [hartree] HOMO [hartree]

LDA Grabo et al.a DARSEC Grabo et al.a DARSEC

H2 -1.137692 -1.137692(1) -0.373092 -0.3730920(7)
BH -24.9770 -24.97695(2) -0.2041 -0.2040(7)
Li2 -14.7245 -14.7244(5) -0.1187 -0.1186(6)

a Ref 10.

Table 4. Ground-State Total Energy and Energy Levels, in
rydbergs, for the H Atom, Calculated with xKLI and xOEP

H exact DARSEC (xKLI, xOEP) m

Etot -1 -1.00000000(3)
1s -1 -1.00000000(8) 0
2s -1/4 -0.25000000(6) 0
2p -1/4 -0.25000000(6) -1, 0, 1
3s -1/9 -0.1111111(2) 0
3p -1/9 -0.11111111(8) -1, 0, 1
3d -1/9 -0.11111111(5) -2, -1, 0, 1, 2

Table 5. Ground-State Total Energy and Energy Levels, in
hartree, for H2

+, at the Equilibrium Bond Length of 2.0 au,
Calculated with xKLI and xOEP

H2
+ analytical resultsa Hartree-Fockb DARSEC (xKLI, xOEP)

Etot -0.6026c -0.6026342145d -0.6026342144(7)
1σg(1s) -1.102625 -1.102634214497 -1.1026342144(7)
1σu(2p) -0.667535 -0.667534392205 -0.667534392(1)
1πu(2p) -0.428775 -0.428771819894 -0.428771819(9)
2σg(2s) -0.360865 -0.36086487543 -0.3608648754(0)
2σu(3p) -0.255415 -0.25541316515 -0.2554131651(7)
3σg(3d) -0.235775 -0.235777628822 -0.2357776288(4)
1πg(3d) -0.226700 -0.22669962663 -0.2266996266(7)
1δg(3d) -0.21273268176 -0.212732681(8)
2πu(3p) -0.20086482987 -0.200864830(1)
4σg -0.177680 -0.177681045(7)
3σu -0.137315 -0.13731292(5)
5σg -0.130791877(9)
2πg(4d) -0.12671013060 -0.12671013(1)
4σu -0.126645 -0.12664387(0)
3πu(4f) -0.12619892048 -0.12619892(1)
1δu -0.12496254(3)
1φu(4f) -0.123125506 -0.12312550(0)
2δg(4d) -0.1210194626 -0.12101946(3)
4πu -0.11591529(2)
6σg -0.1054423(0)
5σu -0.085938(9)
7σg -0.08297(4)
6σu -0.08084(4)
3πg(5d) -0.080833179 -0.08083(5)

a Ref 56. b Ref 58. c Ref 57. d Ref 40.

Table 6. Ground-State Total Energies and HOMO
Energies, in hartree, for the He, Li, and Be Atoms,
Calculated with xKLI and xOEP

xKLI xOEP

atom Grabo et al.a DARSEC Grabo et al.a DARSEC

He -2.8617 -2.8616(8) -2.8617 -2.8616(8)
Li -7.4324 -7.43243(5) -7.4325 -7.4325(0)
Be -14.5723 -14.57228(3) -14.5724 -14.5724(3)

a Ref 11.
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provide the extent to which the exchange virial relation of
Levy and Perdew61

is obeyed, i.e., the difference between the left- and right-
hand sides of the above equation, which is denoted by ∆Exσ

vir.
The resulting deviations are similar to those obtained in
previous work37,14 and, as expected, are significantly smaller
for OEP than for KLI (except for the singly occupied spin
down channel of Li in which the deviations are practically
zero for both xKLI and xOEP).

We now turn to exact-exchange calculations of polyelec-
tron diatomic molecules, starting with xKLI. Tables 9-11
provide total energies and energy levels for LiH, BH, and
Li2. These results are again compared to those of Grabo et

al.,11 where the same bond lengths were used. As with the
single-atom systems, we find an agreement in the energies
to the stated accuracy. Having verified our approach for a
wide range of realistic scenarios, we can now turn to
providing new fully numerical xOEP results for the total
energy and energy levels of LiH, BH, and Li2, using the
same bond lengths that were used for the xKLI calculations.
These results are given in Tables 9-11.

Although xOEP diatomic calculations that are not fully
numerical certainly do exist,5 we are not aware of indepen-
dent fully numerical xOEP diatomic calculations to compare
our results with.62 In the absence of those, we confirm the
correctness of our calculations by verifying that they satisfy
several important criteria:14 First, for the solution to be an
OEP solution, it must satisfy eq 3, i.e., the function Sσ(r)
must vanish. With the xKLI potentials we find |Smax| ≈ 10-2

a0
-3, where a0 is the atomic length unit, whereas for xOEP

calculations converged to 10-4 hartree (in the total energy),
|Smax| is typically of the order of 10-4 a0

-3 or less. Second,
we verify that the obtained xOEP total energies are lower
than the ones obtained by xKLI, i.e., Etot

xOEP e Etot
xKLI. This

must be the case as the OEP solution rigorously satisfies a
variational principle minimization, whereas the xKLI solution
does not.63 Third, a lower bound for the xOEP total energy
is provided by the HF total energy, i.e., Etot

HF e Etot
xOEP. This

is because the xOEP potential must be a local one, whereas
the HF potential has no such constraint.63 We verified that
our xOEP total energies indeed satisfy this relation by
comparing them to the following HF total energies, obtained
by Laaksonen et al.40 from fully numerical calculations
conducted using a similar prolate-spheroidal grid and the
same bond lengths: ELiH

HF ) -7.9874, EBH
HF ) -25.1316, ELi2

HF

) -14.8716. These HF energies are all lower than the
corresponding xOEP total energies. The xOEP total energies
of atoms are closer to the corresponding xKLI total energies
than to the HF total energies.11 This behavior was also
observed here for the diatomic calculations. Fourth, we
calculated the value of ∆Exσ

vir to make sure that the virial
exchange relation of eq 17 holds. We find that, whereas it is
slightly violated by the KLI approximation, with an error in
the order of 0.01 hartree, with OEP calculations converged
to 10-4 hartree in the total energy, the virial exchange relation
is also typically satisfied to ∼10-4 hartree or better. Last,
according to available atomic xOEP calculations11,14,37,50 the
xOEP solutions for the highest occupied eigenvalue are lower
than those of xKLI. This is reasonable, because OEP leads
to stronger binding than KLI.11 This results in a higher
ionization potential, which equals the negative of the highest

Table 7. Ground-State Energy Levels and ∆Exσ
vir, in hartree,

for the Li Atom, Calculated with xKLI and xOEP

xKLI xOEP

Li
1D radial

grid DARSEC
1D radial

grid
Engel and

Voskoa DARSEC

1sv -2.08145 -2.0814(5) -2.05453 -2.0545(3)
2sv -0.19618 -0.1961(9) -0.19629 -0.1963 -0.1962(8)
∆Exv

vir 0.00529 0.0053 1.28 × 10-7 -0.000014 -0.00004
1sV -2.46714 -2.4671(5) -2.46884 -2.4688 -2.4688(5)
2sV -0.3026(2) -0.3031(3)
∆ExV

vir 10-10 -3 × 10-7 -2 × 10-9 0.000004 -0.000009

a Ref 37.

Table 8. Ground-State Energy Levels and ∆Ex
vir, in hartree,

for the Be Atom, Calculated with xKLI and xOEP

xKLI xOEP

Be
1D radial

grida DARSEC
1D radial

grida DARSEC

1s -4.1668 -4.1668(3) -4.1257 -4.1257(1)
2s -0.3089 -0.3088(5) -0.3092 -0.3092(3)
∆Ex

vir ∼1% 0.02 (0.78%) 0.00001,b ∼10-4%a 0.00001(4 × 10-4%)

a Ref 14. b Ref 37.

Table 9. Ground-State Total Energy, Energy Levels, and
∆Ex

vir, in hartree, for LiH, Calculated with xKLI and xOEP

xKLI xOEP

LiH Grabo et al.a DARSEC DARSEC

Etot -7.9868 -7.98680(8) -7.98691(9)
1σ -2.0786 -2.0786(0) -2.069(4)
2σ -0.3011 -0.3010(5) -0.3015(9)
∆Ex

vir -0.02 -0.000098

a Ref 11.

Table 10. Ground-State Total Energy, Energy Levels, and
∆Ex

vir, in hartree, for BH, Calculated with xKLI and xOEP

xKLI xOEP

BH Grabo et al.a DARSEC DARSEC

Etot -25.1290 -25.12903(0) -25.12963(6)
1σ -6.8624 -6.8623(6) -6.8126(5)
2σ -0.5856 -0.58561(5) -0.577(4)
3σ -0.3462 -0.34621(2) -0.34729(7)
∆Ex

vir 0.01 0.0003

a Ref 11.

Ex,σ[F(r)] ) ∫Vx,σ
OEP(r)[3Fσ(r) + r · ∇Fσ(r)] d3r

(17)

Table 11. Ground-State Total Energy, Energy Levels, and
∆Ex

vir, in hartree, for Li2, Calculated with xKLI and xOEP

xKLI xOEP

Li2 Grabo et al.a DARSEC DARSEC

Etot -14.8706 -14.87058(0) -14.87076(5)
1σg -2.0276 -2.0275(9) -2.01(3)
1σu -2.0272 -2.0272(4) -2.01(3)
2σg -0.1813 -0.1812(7) -0.1818(3)
∆Ex

vir -0.04 -0.0000098

a Ref 11.
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occupied eigenvalue in exact Kohn-Sham theory.64,65 Tables
9-11 confirm that this trend is also found here.

We end this section with our representative case of the
CO molecule. Whereas with xKLI we got a total energy of
-112.7832 hartree, the xOEP total energy turns out to be
-112.785(3) hartrees. Interestingly, a previously reported
OEP calculation for CO performed using basis sets66 yielded
a total energy of -112.77652 hartree. This value is higher
than the corresponding KLI one, as also pointed out by Engel
et al.43 This underscores the importance of fully numerical
all-electron OEP calculations. In calculations that are not
fully numerical, even when the computation is numerically
converged it may still contain errors that are inherent in the
approximations made.

4. Conclusions

We presented an approach for fully numerical, all-electron
solutions of the OEP equation within Kohn-Sham DFT for
diatomic molecules. The approach is based on a real-space,
prolate-spheroidal coordinate grid for solving the all-electron
Kohn-Sham equations and an iterative scheme for solving
the OEP equation. The accuracy of the approach, as
implemented by us in the DARSEC program, was demon-
strated by comparison with previously reported results within
LDA, xKLI, and xOEP calculations. Finally, new benchmark
fully numerical xOEP results for selected diatomic molecules
were provided. Because our method is free of any ap-
proximation other than the choice of the approximate
exchange-correlation energy functional (and unavoidable
numerical roundoff errors), we believe that it may serve as
a powerful tool for systematic testing and evaluation of
orbital-dependent functionals.
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Appendix A: Non-Hermiticity of the Laplacian

In the prolate-spheroidal coordinate system, the Laplacian
operator, ∆m of eq 9, is not Hermitian (with respect to a
standard inner product). This is because it is a weighted sum
of second derivatives, which are Hermitian operators, and
first derivatives, which are anti-Hermitian operators. This
raises additional numerical issues, which are discussed in
this Appendix. We show that although the problem may be
completely resolved analytically, it reappears upon discreti-
zation of the Kohn-Sham equation. The discretization then
either approximates the analytical operator extremely well,
but is only almost Hermitian (i.e., most, but not all, of its
entries, obey Hermiticity), or it yields a strictly Hermitian
matrix, but may be an insufficiently accurate approximation
to the analytical operator.

For any differential operator that is Hermitian in Cartesian
coordinates but is not Hermitian in some other coordinate
system, it is always possible to regain Hermiticity by

multiplying with the corresponding Jacobian, J. In particular,
for the Laplacian operator in prolate-spheroidal coordinates,
we have

where the Jacobian, J(µ, ν, φ), is a real function, given by
eq 16. Multiplying both sides of the Kohn-Sham eq 1 by
the Jacobian yields

where some algebraic manipulation shows that the operator
J∆m is given by

In this formulation, the Kohn-Sham Hamiltonian is rigor-
ously Hermitian, at the cost of having to solve a generalized
eigenvalue problem.

We now consider the discrete representation of eq A3.
Clearly, the operator J∆m is Hermitian in its discrete matrix
form if and only if the operator ((∂/∂R)gR(R)(∂/∂R)), where
R ) µ, ν and gR ) sinh, sin, respectively, is represented by
a Hermitian matrix. We denote the matrix representation for
the usual high-order finite difference expansion of a first
partial derivative ∂/∂R by a matrix DR. The function gR is
represented by the appropriate diagonal matrix GR. Normally,
the complete operator ((∂/∂R)gR(R)(∂/∂R)) can then be
represented as either [DRGRDR] or [-DR

TGRDR]. The latter
expression is manifestly Hermitian, but normally so is the
former because DR is anti-Hermitian, i.e., DR

T ) -DR.
Unfortunately, here the matrix representation of DR is
complicated by the boundary conditions: If a grid point is
near the boundary, values of neighbors lying beyond the
boundary (i.e., across the µ ) 0, ν ) 0, or ν ) π lines, or,
equivalently, across the interatomic axis in real space) need
to be taken into account for evaluating the derivative in that
point. These are taken as plus or minus the values at the
mirror positions inside the boundary, depending on the
angular momentum number m, which dictates the parity of
the wave function.41 Formally, the 2Lth order finite difference
matrix representation of the first derivative, for a function
with angular number m, then assumes the following form
(given here for derivation along µ as an example)

Table A1. Ground-State Energy Levels, in rydberg, for the
H Atom, Calculated with xKLI Using Non-Hermitian (Third
Column) and Hermitian (Fourth Column) Hamiltoniansa

H exact DR
mGRDR

m -(DR
m)TGRDR

m

1s -1 -1.0000000 -1.00065
2s -1/4 -0.2500000 -0.25053
2p -1/4 -0.2500000 -0.25007

-1/4 -0.2500000 -0.24986
-1/4 -0.2500000 -0.24986

a An expansion order of 2L ) 12 neighbors was used.

∫ f*(J∆mg) dµ dν dφ ) ∫ f*(∇2g) dx dy dz )

∫ (∇2f)*g dx dy dz ) ∫ (J∆mf)*g dµ dν dφ (A1)

J (-1
2

∆m + VKS)�i ) εi J�i (A2)

J∆m(µ, ν) ) R
2 [sin(ν)( ∂

∂µ
sinh(µ)

∂

∂µ) +
sinh(µ)( ∂

∂ν
sin(ν)

∂

∂ν) - m2( sin(ν)
sinh(µ)

+ sinh(µ)
sin(ν) )] (A3)
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Here, i, j are running indices of two arbitrary grid points
and iR, jR are running indices for the same two points along
the one-dimensional direction R.67 The weight of the kth
neighbor for the first derivative in the high-order finite
difference scheme is given by Ck.

44 Because C-k ) -Ck, it
follow that DR

m(i, j) )-DR
m(j, i) for most i, j entries. However,

for i, j pairs that are near the boundaries, i.e., belonging in
the last line of eq A4, DR

m(i, j) * -DR
m(j, i), and consequently

DR
m is neither Hermitian nor anti-Hermitian. Thus, the

representations [DR
mGRDR

m] and [-(DR
m)TGRDR

m] are not equiva-
lent, and only the latter must be Hermitian.

Careful consideration of the structure of the matrix DR
m of

eq A4 reveals that [DR
m]T )-DR

m+1. Therefore, [-(DR
m)TGRDR

m]
) [DR

m+1GRDR
m] differs from [DR

mGRDR
m] solely in the parity

of the left-most matrix. Unfortunately, parity considerations
show that it is the latter, non-Hermitian form, rather than
the former, Hermitian form, which is the correct one.
Importantly, this undesirable tradeoff between accuracy and
Hermiticity of the representation is a direct consequence of
using a high-order expansion. For L ) 1, i.e., use of
immediate neighbors only (and with the interatomic axis
explicitly used), the problem does not arise. However, this
clearly comes at the cost of a significant reduction in
numerical accuracy, per a given grid step.

The numerical consequences of the difference between the
two representation schemes are illustrated in Table A1. For
a single H atom, it compares the known analytical results to
those of xKLI calculations, diagonalized with the above two
matrix representations (and all else being equal). Clearly,
the “almost Hermitian” representation (third column) yields
results that are accurate to all digits shown, whereas the
Hermitian representation (fourth column) produces relatively
poor results.

A different perspective on the above considerations can
be obtained from variational arguments. Equation A2 can
also be derived from the variational principle: Let F be a
functional given by

then setting the variation of F with respect to �i(r) to zero,
where all variation is performed in the prolate-spheroidal
coordinate system, yields eq A2.

Becke suggested that a discrete prolate-spheroidal Her-
mitian representation for the Kohn-Sham equations can be
obtained by discretizing the functional of eq A5 and
performing the variation on the discrete form.39 The discrete

variation leads to the Hermitian representation,
-[(DR

m)TGRDR
m],39 obtained above from a different set of

considerations. This means that we have obtained an insuf-
ficiently accurate representation despite starting from a
completely equivalent analytical expression, a result which
merits an explanation. A key issue in this respect is that in
the functional F of eq A5, the kinetic energy term is
expressed as (1/2)∫|∇�i(r)|2 d3r and not as -(1/
2)∫�i*(r)∇2�i(r) d3r. Normally, the two expression are
equivalent analytically by virtue of Green’s first identity. But
numerically, because of the “mirror” or “antimirror” bound-
ary conditions imposed by the prolate-spheroidal coordinate
system, Green’s identity is no longer obeyed after discreti-
zation. To see that, consider that in prolate-spheroidal
coordinates, use of the alternative definition for the kinetic
energy, (1/2)∫|∇�i(r)|2 d3r, would lead to one-dimensional
integrals, and therefore discretization, of the type

However, the original definition for the kinetic energy, -(1/
2)∫�i*(r)∇2�i(r) d3r, leads to different one-dimensional
integrals, and hence discretization

As explained above, the two forms would have been
equivalent had (DR

m)T ) -DR
m, but as this is not the case,

only the latter, non-Hermitian form, is accurate.

Appendix B: Computing the Orbital Shifts

The OEP method requires the construction of “orbital shifts”,
ψiσ(r), defined in eq 4. According to this equation, ψiσ(r)
may be interpreted as the negative of the first-order orbital
correction that results if a Kohn-Sham orbital, �iσ(r), is
subjected to the perturbation15

The orbital shifts may thus be computed using first-order
perturbation theory from

where εiσ
0 is the ith Kohn-Sham eigenvalue and εiσ

1 is its
first-order correction.10,50 The solution of eq B2 is obtained
numerically by using the conjugate gradient (CG)49 method.
In practice, solving this equation in DARSEC with the
prolate-spheroidal coordinates requires several observations:

First, following eq 4 and using the rotational symmetry
of the perturbed potential, ∆Viσ(µ, ν, φ) ) ∆Viσ(µ, ν, 0), the
orbital shifts can be shown to have the same rotational
symmetry as their associated Kohn-Sham orbitals

Dµ
m(i, j) ) {0 iν * jν or |iµ - jµ| > L

Cjµ-iµ
iν ) jν and |iµ - jµ| e L

and iµ - (-jµ) > L

Cjµ-iµ
+ (-1)mC-jµ-iµ

iν ) jν and |iµ - jµ| e L
and iµ - (-jµ) e L

(A4)

∫ ( ∂

∂R
�i(µ, ν, φ))*( ∂

∂R
�i(µ, ν, φ))gR(R) dR ⇒

〈DR
m�i|GRDR

m�i〉 ) 〈�i|(DR
m)TGRDR

m�i〉 R ) µ, ν (A6)

-∫�i*(µ, ν, φ)( ∂

∂R
gR(R)

∂

∂R)�i(µ, ν, φ) dR ⇒

- 〈�i|DR
mGRDR

m�i〉, R ) µ, ν (A7)

∆Viσ(r) ) uiσ(r) - Vxc,σ
OEP(r) (B1)

(HKS - εiσ
0 )ψiσ(r) ) -(εiσ

1 - ∆Viσ(r))�iσ(r) (B2)

�kσ(µ, ν, φ) ) �kσ(µ, ν, 0)eimkφ S ψkσ(µ, ν, φ) )

ψkσ(µ, ν, 0)eimkφ (B3)
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Second, the CG method assumes Hermiticity of the inverted
operator, whereas in DARSEC the Kohn-Sham matrix is
not Hermitian (see Appendix A). This difficulty is present
in all other CG applications in DARSEC, but it is usually
solved by multiplying both sides of the equation by the
volume element J (µ, ν, φ) (eq 16), which makes the matrix
Hermitian “enough” for the CG method to work properly.
In the case of eq B2, however, the non-Hermiticity of the
matrix is more severe as it also influences the evaluation of
the εiσ

1 term in eq B2. This is because the usual expression,
given by εiσ

1 ) 〈�iσ|∆Viσ|�iσ〉 ≡ ∆Viσ(r) is no longer valid.
Instead, first-order perturbation theory for a general (not
necessarily Hermitian) operator shows that εiσ

1 generally takes
the following form

For a Hermitian operator, eq B4 properly reduces to the usual
expression due to the orthogonality between �iσ(r) and its
orbital shift, ψiσ(r).14 Since the Kohn-Sham Hamiltonian
in DARSEC is represented by an almost Hermitian matrix,
the resulting orbitals are no longer fully orthogonal and the
matrix cannot be applied to the left. As a result, all the terms
of eq B4 must be taken explicitly into account when eq B2
is solved. To make this equation compatible with the required
CG formsa known matrix A on the left-hand side and a
known vector b on the right-hand sideswe rearrange it in
the form

Because the deviation from Hermiticity of the Hamiltonian
matrix is relatively small (see Appendix A), the added terms
〈ψiσ|HKS|�iσ〉 and 〈�iσ|HKS|ψiσ〉 are also small, of the order
of 10-4 hartree. Still, including them in the calculations was
found to be crucial for getting converged solutions.

Third, we have found it numerically useful to compute
the orbital shifts in two successive steps: At first, we find an
approximation to the orbital shifts by solving eq B2 with εiσ

1

) ∆Viσ(r), using the symmetric (but inaccurate) Hamiltonian
matrix. In the second and final step the CG method is applied
once again, but now it solves eq B5 with the highly accurate
(almost symmetric) Hamiltonian matrix and with the previ-
ously found orbital shift approximations as initial guess
vectors.
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100, 133004.
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(43) Engel, E.; Höck, A.; Dreizler, R. M. Phys. ReV. A 2000, 62,
042502.

(44) Fornberg, B. Math. Comput. 1988, 51, 699.

(45) Beck, T. L. ReV. Mod. Phys. 2000, 72, 1041.

(46) (a) Chelikowsky, J. R.; Troullier, N.; Saad, Y. Phys. ReV.
Lett. 1994, 72, 1240. (b) Chelikowsky, J. R.; Troullier, N.;
Wu, K.; Saad, Y. Phys. ReV. B 1994, 50, 11355.

(47) Chelikowsky, J. R. J. Phys. D 2000, 33, R33.

(48) Kronik, L.; Makmal, A.; Tiago, M. L.; Alemany, M. M. G.;
Jain, M.; Huang, X.; Saad, Y.; Chelikowsky, J. R. Phys.
Status Solidi B 2006, 243, 1063.

(49) Reid, J. K. In Large Sparse Sets of Linear Equations:
Proceedings of the Oxford Conference of the Institute of
Mathematics and Its Applications; Reid, J. K. Ed.; Academic
Press: London, United Kingdom, 1971; pp 231-254.
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Abstract: We have recently proposed a method to evaluate the weights of resonance structures
embedded in a molecular orbital by utilizing singlet-coupling scheme of an electron pair [J. Phys.
Chem. A 2006, 110, 9028]. The method was formulated on the basis of the second quantization,
in which a biorthogonal operator related to Mulliken population (MP) was used together with
the Boys-Foster (BF) localization scheme. Our method is very easy to use; only a standard
localization procedure is required to obtain the resonance weights. In addition, obtained results
agreed well with our chemical intuition. In the present Article, the restrictions, namely MP and
BF, were removed, and an operator related to Löwdin population (LP) and other various types
of localization schemes were employed to examine the generality of the method. We found that
computed resonance weights were virtually independent not only on the choice of these
combinations but also on basis set. This new finding, the invariant nature in terms of resonance,
may suggest that the present approach could be promising for analyzing molecular orbitals.

1. Introduction

The chemical bond is a central concept in chemistry.
However, the presently available computational tools are not
always related to the concept of the bond. In principle, there
are two ways to obtain the electronic wave function: valence
bond (VB) method and molecular orbital (MO) method. The
former provides an understanding of the chemical bond in a
relatively intuitive way, being related to the concepts of
covalency, ionicity, and their resonance. Many modern
electronic structure theories and their applications are based
on the latter method. In this regard, a bridge between the
two methods is indispensable. In other words, VB-based
characterization of the MO wave function is highly desired
to elucidate the nature of chemical bonding. Karafiloglou
et al. are working vigorously to address this problem,1 and
several other methods for such purpose have been developed
so far, including papers by Shaik et al.,2 the pioneering work
by Hiberty et al.,3 natural resonance theory (NRT)4 by

Weinhold et al., and the method based on CASSCF-type
wave function by Hirao and co-workers.5 MOVB by Mo
and Gao is a direct realization that fits the present purpose.6

Another type of analysis based on locally defined energy by
Nakai et al. can also offer a detailed look inside at the
electronic structure of a molecule and its bonds.7

Recently, we proposed a new analysis method to evaluate
the weights of resonance structures and applied it to several
molecular systems.8 All the results fit in with our chemical
intuition. For instance, the method was combined with RISM-
SCF,9 which provides microscopic information on the
solvation effect based on statistical mechanics for molecular
liquids, and the enhancement of the ionic contribution to
electronic structure in solvated molecular system was
adequately calculated.8b,c Our method is very easy to use:
Because of the simple strategy based on the second quantiza-
tion of singlet-coupling in the target orbital, what we need
to obtain the weights is only the density matrix of localized
orbitals, and the additional computational cost is negligible.
The results also showed excellent agreement with the past
reports.8a

In the original work,8 a biorthogonal operator related to
Mulliken-population (MP) introduced by Mayer10,11 was
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employed together with the Boys-Foster (BF)12 localized
orbitals. In the present study, we erase these restrictions, and
the protocol is extended to a generalized one that includes
Löwdin population (LP) related operators13 with various
localization schemes such as Edmiston-Ruedenberg (ER)14

and Pipek-Mezey (PM)15 methods. Furthermore, the basis
set dependence is examined since it is usually believed to
become a serious issue in this type of analysis. The obtained
results shows remarkable invariance as explained below,
establishing that the present analysis can deliver clear
understanding of chemical bondings.

2. Theory

The first order density matrix (D)νµ of wave function |Ψ〉 is
given by eq 1

where aν
+ and aµ

- are the creation and annihilation operators
related to atomic orbitals (AOs) ν and µ, respectively.11 In
a similar manner, we can define density matrices for an
orthonormalized orbital ψi (i ) 1, 2, ...), as follows:

The matrix holds the idempotency

and the number of electrons is conserved in each orbital in
closed-shell system.

From eqs 3 and 4, a simple equation is obtained:

M and N are atomic labels. By introducing spin variables
σ1 and σ2 (σ1 * σ2), the quantity is also expressed as the
expectation value of an operator

In the case of µ * ν, both 1/4(di)νµ(di)νµ and 1/4(di)νµ(di)νµ

represent the weight of the state in which two electrons are
singlet-coupled and shared by two AOs, µ and ν. In the case
of µ ) ν, 1/4(di)µµ(di)µµ represents the weight of the state in
which two electrons occupy the same AO (µ). Hence, 2WMN

i

) WMN
i + WNM

i is considered as the weight of the state in
which two electrons in ψi are shared between M and N
atoms, and WMM

i is that of the state in which two electrons
in ψi are belonging to the atom M.

Let us consider a localized molecular orbital (LMO) ψi
local

(i ) 1, 2, ...), which has a two-center character between A
and B atoms. Equations 5 and 6 are then

One can notice that each term corresponds to the weights
of ionic and covalent character in the bond between A and
B. WAA

i is the weight of the ionic structure (A- B+), WBB
i is

that of the ionic structure (A+ B-), and 2WAB
i is that of the

covalent structure (A-B). Wj i, sum of all the terms in braces
corresponding to a many-body term, arises from the fact that
LMO often penetrates into other than A and B atoms. As
will be shown below, however, Wj i is actually very small
because the concerned two electrons are usually localized
in the area between A and B.

Total wave function of a molecule (|Ψ〉) is invariant to
any unitary transformation among occupied orbitals, and the
choice of the orthonormalized orbital is arbitrary. In general,
each MO can be localized into either one-center (core orbital,
lone-pair orbital, etc.) or two-center (bonding) orbitals. If
electrons in different LMOs are independent of each other,
the weights of resonance structures of the molecule are
simply represented by multiplications of the weights of the
two-center bonding orbitals (note that atomic index A and
B must be related to the orbital i).

Since the sum of the four terms in parentheses is always
1, normalization of the weights is always guaranteed. It is
noteworthy that the contribution from the one-center orbital
is regarded as unity because of A ) B with negligible Wj i.
The alternative view is that the one-center contribution must
be simply taken out because it does not participate in the
formation of bondings. The separation between one- and two-
center orbitals is readily defined, judging from the population
assigned to each atom in the localized orbital. As a
consequence, the resonance structure of a molecule can be
computed by the combinational products of each bonding
contribution.

In eq 5, what we need is to compute the density matrix
elements related to localized orbital ψi

local, (di)νµ. Now we
have two issues that need to be selected in the actual
computation of this quantity. One is the choice of the operator
described in eq 1, and the other is orbital localization scheme
to obtain ψi

local. For the former choice, both the nonorthogonal
and orthogonal AO based operators are examined in this
study: nonorthogonal-AO creation operator �ν

+ and its bior-
thogonal-AO annihilation operator φµ

- related to MP,10,11

which were introduced in our original work, and the
operators, lν

+ and lµ
-, related to LP.13

(D)µν ) 〈Ψ|aν
+aµ

-|Ψ〉 (1)

(di)µν ) 〈ψi|aν
+aµ

-|ψi〉 (2)

(di)µµ ) 1
2 ∑

ν
(di)µν(d

i)νµ (3)

2 ) ∑
µ

(di)µµ (4)

1 ) 1
4 ∑

µ
∑

ν
(di)µν(d

i)νµ ) ∑
M,N

WMN
i where

WMN
i ) 1

4 ∑
µ∈M

∑
ν∈N

(di)µν(d
i)νµ (5)

1
4

(di)µν(d
i)νµ ) 〈ψi|aν

σ1+aµ
σ2+aν

σ2-aµ
σ1-|ψi〉 (6)

1 ) ∑
M,N

WMN
i ) WAA

i + 2WAB
i + WBB

i +

{all other terms (WMN
i ) in which

(M, N) is not (A or B) at the same time }
) WAA

i + 2WAB
i + WBB

i + Wj i

(7)

1 ) ∏
i

LMOs

(WAA
i + 2WAB

i + WBB
i + Wj i) (8)

Mulliken type: (di)νµ ) (piS)νµ (aν
+ ) �ν

+ and aµ
- ) φµ

-)
(9)
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S is the overlap matrix and (pi)νµ is an element constituting
P-matrix (P) for given orbital i.10,13

(CL)iµ is the LCAO coefficient of LMO i. The standard
P-matrix is computed by summing over all the occupied
orbitals, and only the total sum is invariant under the
transformation from canonical orbitals (being delocalized)
to other localized ones.

For the choice of localization as the second option, three
major schemes were examined in this article: Boys-Foster
(BF), Edmiston-Ruedenberg14 (ER), and Pipek-Mezey15

(PM) localization. Hence, the original analysis is generalized
in terms of these various combinations of two options.
Hereafter, the combination is respectively called BF-, ER-
and PM-weights based on the MP (Mullliken) or LP
(Löwdin) population related operator. Additionally, the basis
set dependence could be crucial from the standpoint of the
invariance of the theory. A series of basis sets implemented
in the GAMESS program package,20 DZ, DZP, TZ, TZP,
and TZP+,17 were used for the purpose of a systematic
investigation, and further large basis sets were also employed.
It is noted that 5d orbitals were used throughout the study
since Löwdin population analysis with 6d orbitals is not
rotationally invariant.18,19 All calculations were performed
with program code GAMESS20 modified by us.

3. Results and Discussion

3.1. H2: A Basal Examination. At first, the weights of
resonance structures of H2 were calculated. This is a basal
examination and the so-called minimum requirements in this
type of analysis. Because the occupied orbital is unique in
this two-electron system, the orbital transformation is not
necessary, meaning it is unrelated to the localization scheme.
Another special character of this system is that weights do
not depend on the choice of basis set at all due to the high
symmetry.

The obtained weight of covalent structure H-H was 50%,
and that of each ionic structure H+ H- and H- H+ was,
respectively, 25%. These properly exhibit a well-known fact
that the electronic structure of H2 in the Hartree-Fock wave
function possesses half-covalent and half-ionic character.

3.2. H2O and NH3. Second, the H2O molecule is exam-
ined. After carrying out standard MO computations, the
orbitals were localized by BF, ER, and PM procedures

(Figure 1 ). Independent of the basis set choice, three one-
center (i ) 1,2,3) and two two-center (i ) 4,5) orbitals were
obtained by each localization method. Regarding one-center
orbitals, the core orbital is common to all the procedures.
The distinct difference is the PM localization produced one
in-plane and one out-of-plane lone pair orbital, whereas BF
and ER localizations gave two equivalent lone pair orbitals.
But for the two-center orbitals, all the three localization
procedures provide very similar orbitals corresponding to the
two O-H bonds (OH1 and OH2). The weights of resonance
structures of H2O are calculated from (pi)νµ of the two two-
center orbitals, which participate the bond formation.

By opening the brackets, the weights are calculated as
shown in Figure 2. The upper panel shows results obtained
from the MP operator while the lower panel shows results
from the LP one using various basis sets. The six combina-
tions are possible at the choice of the localization (BF, ER,
and PM) together with the operator (MP and LP), but the
ER-weights were not shown in the figure. This is be-
cause they are virtually the same as the BF-weights, and the
differences were always less than 0.1% in all the resonance
structures. All in all, the most important resonance structure
was 2, in which one O-H bond was ionic and the other is
covalent. The next is the totally covalent structure 1, which
is comparable with a totally ionic structure 4. As illustrated
in the figure, BF- and PM-weights are almost the same,
meaning that the three localization procedures provide
essentially the same results. This may not be surprising
because BF, ER, and PM two-center orbitals look very
similar, as shown in Figure 1. Essentially, two operators

Löwdin type: (di)νµ ) (S1/2piS1/2)νµ (aν
+ ) lν

+ and

aµ
- ) lµ

-) (10)

(pi)µν ) 2(CL)µi(C
L*)νi (11)

(P)µν ) ∑
i

occ

(pi)µν

) 2 ∑
i

occ

(C)µi(C
*)νi ) 2 ∑

j

occ

(CL1)µj(C
L1*)νj

) 2 ∑
k

occ

(CL2)µk(C
L2)νi ) ...

(12)

Figure 1. Three one-center and two two-center BF-, ER-,
and PM-orbitals of H2O. TZP basis sets were used.

1 ) (WOO
4 + 2WOH1

4 + WH1H1

4 + Wj 4)(WOO
5 +

2WOH2

5 + WH2H2

5 + Wj 5) (13)
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deliver very similar results, but the weights of 2 and 4
evaluated with the Löwdin type were slightly smaller than
those with the Mulliken type, which is consistent with a
general trend that polarization is slightly enhanced in MP;
for example, populations of the oxygen atom calculated with
MP and LP (TZP basis sets) were, respectively, 8.615 and
8.397. Another important difference is found in the many-
body term arising from the product of Wj i. The contribution
is negligibly small, but the sign is different between two
operators. This can be readily understood in terms of a well-
known fact that MP analysis often gives negative population
due to the nonorthogonality of AOs. However, it must be
emphasized that these differences were very small, and two
operators provided essentially the same results. Thus, the
present procedure seems to be virtually independent from
the choice of eq 9 or 10.

All the basis sets provide almost similar results, and the
dependence is very small. The differences in the weights
are less than 5%. It might sound paradoxical when remem-
bering that the present analysis is related to MP (or LP)
analysis, which is usually regarded to exhibit considerable
basis-set dependence. Actually, the Mulliken charge of
oxygen varies from -0.799 (DZ) to -0.615 (TZP). However,
the paradox can be dispelled from the viewpoint of fraction
F defined as the ratio of the assigned charge of oxygen to
the total electron number in the system: the difference in
electron number between the DZ and TZP results, 0.184,
corresponds to less than 2% of the total number (0.184/10
× 100). The change in electronic structure often looks
remarkable from the point of view of commonly used
counting of electron numbers assigned to a specific atom,
but it can look changeless when a different viewpoint is
introduced. The weights of resonance structure, which
characterizes the electronic structure of the whole molecule,
is obviously related to the ratio, not to direct number-
counting. In fact, the basis set dependence of the weights
shows a good correlation with F (Figure 3). In other words,

the viewpoint of resonance structure could offer a robust way
to understand the electronic structure of molecules. Table 1
lists the results from much larger basis sets. Again, the
obtained wights are virtually independent of the basis set
choice. Since the Mulliken population evaluated with these
basis sets varies to a considerable degree, the resonance
weights also show slight variation. Even so, all the standard
deviations of each weight are less than 3.0%.

The next example is NH3. By the localization, two one-
center (the core and lone-pair of nitrogen) and three two-

Figure 2. Weights (%) of resonance structures of H2O evaluated with Mulliken and Löwdin operators.

Figure 3. Basis set dependence of F, which is the fraction
between number of electrons and Mulliken population of
oxygen (bar). The weights of resonance structures 2 and 4
(lines), calculated by BF-localization.

Table 1. Weights of Covalent and Ionic Bond (%) in H2O
by Larger Basis Setsa

basis set 1 2 3 4 5 6

cc-pVDZ 24.27 32.97 17.85 11.20 12.13 3.28
cc-pVTZ 22.92 37.82 13.88 15.60 11.46 2.10
cc-pVQZ 21.98 39.64 12.18 17.88 10.98 1.69
aug-cc-pVDZ 25.07 32.69 19.23 10.65 12.53 3.69
aug-cc-pVTZ 22.83 34.86 14.95 13.31 11.41 2.45
aug-cc-pVQZ 21.01 37.48 11.78 16.71 10.51 1.65

a BF and MP operator was used. See Figure 2 for the index of
the resonance structures.
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center N-H orbitals were obtained, and wights were
calculated from the latter ones. Three orbitals respectively
obtained by BF, ER, and PM localizations look similar to
the case of H2O (not shown), and all the weights are also
independent to the localization schemes, the operators, as
well as the choice of basis sets. In Figure 4, some structures
with high weights are selectively shown. The most important
structure was 2, which consisted of two covalent (N-H) and
one ionic (N-H+) bonds. Next was 4, which consisted of
one covalent (N-H) and two ionic (N-H+) bonds. Both 2
and 4 have the character of a negatively charged nitrogen
atom, and the weights calculated with Löwdin type were
slightly smaller than those with Mulliken type. This feature
is again related to the difference in these population analysis.

3.3. H2CO. Next, the double bond CdO in H2CO was
the focus. In the above-mentioned molecules, bonding
orbitals look very similar independent of the localization
schemes. The situation is different in the case of a double
bond (see Figure 5). BF and ER localization provide two
equivalent σ-π mixed orbitals, exhibiting so-called “banana
bond” character (BF1, BF2 and ER1, ER2, respectively),
while PM localization provides one σ (PM1) orbital and one
π orbital (PM2). In other words, the generality is not obvious
compared to the previous cases.

Figure 6 shows calculated BF- and PM-weight from the
two orbitals in a similar manner. In all cases, the most
important resonance structure is 2, which comprises one ionic
bond and one covalent bond, and the next is 1, which is a
doubly bonded resonance structure. These results accord with
common knowledge of polarized character in a CdO bond.
One of the most interesting findings is that the weight does
not depend upon the choice of operator as well as upon the
localization scheme again, even though orbitals BF1 and BF2
looks very defferent from PM1 and PM2. Total weights are

virtually the same among all the combinations, and the
difference is less than few percents.

Table 2 compares the localized orbitals in terms of
respective weight components defined in eq 5, together with
their population calculated by the MP operator. It is
unsurprising that BF and ER give virtually the same weights,
probably due to their similarity of orbitals. At the same time,
PM1 and PM2 are slightly different from those of BF and
ER, which are located in the middle of the two PMs. The
weights are then calculated from these values, for example,

The obtained weights are a little different though they
are derived in different ways. It should be noted that all

Figure 4. Weights (%) of important resonance structures of NH3 evaluated with Mulliken and Löwdin operators.

Figure 5. Two two-center BF-, ER-, and PM-orbitals of H2CO,
corresponding to the CdO bond. TZP basis sets were used.

BF
1: CdO 0.4774 × 0.4774 ) 22.79%

2: C+-O- 0.4774 × 0.3834 × 2 ) 36.61%
PM
1: CdO 0.4989 × 0.4505 ) 22.48%
2: C+-O- 0.4989 × 0.4286 + 0.4505 ×

0.3313 ) 36.31%
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the localized orbitals are linked through unitary transfor-
mation, but the numbers shown here (weight and its
components) are not necessarily the same because the
summation in eq 5 is limited over a specific atom (M and/
or N) and the transformation is not completed.

Another viewpoint is the population of the localized
orbitals. In the table, two orbitals were chosen for each
localization scheme, and as can be seen, though the
populations assigned to PM1 and PM2 are different from
each other, the sum of them is very close to that of BF
and of ER. It is noted that the Mulliken population is
invariant against unitary transformations of the occupied
orbitals, and the gross populations are 5.8310 (carbon),
8.3206 (oxygen), and 0.9242 (hydrogen), respectively.
There are two σ-orbitals in carbon and hydrogen, and three
one-center (core and lone pair) orbitals in oxygen. If each
of them is ideally occupied by exactly two electrons,
1.8310, 2.3206, and -0.0758 are assigned to the popula-
tion of these two orbitals, which are reasonably close to
those of localized orbitals shown in the table. This may
suggest that the valence space extracted by all the
localization scheme are well separated from the core and
lone-pair orbitals, and the obtained valence-space, which

is the direct sum of the space spanned by the two orbitals,
is very similar each other.

Unfortunately, the formal proof of this invariance seems
to be impossible because the agreement is more like
qualitative sense. All the numbers look essentially equivalent
but are not exactly the same. According to our experience,
the invariance about the localization scheme is always found
in every case, even in a more complicated compound such
as a triple-bond-containing molecule, and the obtained result
always matches our chemical intuition for the examined
molecules. Hence, the following two facts are worth pointing
out. One is that the present analysis is related to MPA that
is invariant against unitary transformations. The other point
is the present measuring rule, namely, fraction. As mentioned
above, an understanding in terms of the ratio seems to be
robust enough, and even the basis set dependence of MPA
becomes less prominent.

3.4. Some Other Molecules. Finally, two examples are
shown. One is a substituent effect to H2CO, namely XYCO.
The same procedures were employed to evaluate the weight
using PM localization to select one π and one σ orbital. As
shown in Table 3, polarization of the C-O bond properly
reproduced, and the contribution from C+-O- becomes

Figure 6. Weights (%) of resonance structures of H2CO evaluated with Mulliken and Löwdin operators.

Table 2. Weights of Covalent and Ionic Bonds in H2CO Calculated by All the Localization Schemesa

weights/% population
WCC 2WCO WOO C O H H

BF1 14.86 47.74 38.34 0.7710 1.2384 -0.0047 -0.0047
BF2 14.86 47.74 38.34 0.7710 1.2384 -0.0047 -0.0047

subtotal 1.5420 2.4768 -0.0094 -0.0094
ER1 14.91 47.74 38.23 0.7722 1.2365 -0.0044 -0.0044
ER2 14.91 47.74 38.23 0.7722 1.2365 -0.0044 -0.0044

subtotal 1.5444 2.4730 -0.0088 -0.0088
PM1 18.78 49.89 33.13 0.8668 1.1511 -0.0089 -0.0089
PM2 11.84 45.05 42.86 0.6881 1.3094 0.0013 0.0013

subtotal 1.5549 2.4605 -0.0077 -0.0077

a Computed with the MP operator, and TZP basis sets were used.
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greater by inductive effect compared to the original H2CO.
Interestingly, the contributions from a pure double bond
hardly change by the substitution.

The next example is formamide. In relation to the
understanding of the nature of an amide bond, its resonance
structure was extensively studied by Mo et al.21 Since the
present analysis is built up from separated chemical bonds,
treatment of conjugation is not simple. For the sake of
simplicity, the following procedure was adopted in the
present study. By BF localization, two π orbitals were
obtained, and these four electrons are considered to be related
to the resonance structure. But the lone-pair electron on the
nitrogen atom is also included in this set. Hence, after
computing the weights by multiplying the contributions from
C-O and C-N bonds, as described above, this contribution
(C+ N-) was subtracted to obtain the final resonance
structure. Using the MP operator with 6-31G(d) basis set,
the following weights were obtained: 1, 28.0%; 2, 25.6%;
3, 15.9%; 5, 7.7%; 6, 2.5%. (The index was defined by Mo
et al. in their work.21 Since O · · ·N direct interaction is not
taken into account, the contribution from 4 does not explicitly
appear in the present treatment.) Although this procedure is
rather ad hoc, the qualitative trend derived shows good
agreement with their report.

Nevertheless, the present method is good at analyzing
bonds localized at a specific region. The description of
conjugated electrons system is relatively poor, and further
improvement is highly desired.

4. Conclusions

In the present work, our recently proposed method is
generalized to evaluate the weight of resonance structures
by taking the various combinations of the operator and
the localization scheme. The method is applied to ana-
lyze the electronic structure of H2, H2O, NH3, and H2CO,
and the basis set dependency of the method is also
examined. Though the chosen operator, namely Mulliken-
type or Löwdin-type, is kind of responsible for the weight,
it can be concluded that the result is virtually independent
from the combination as well as from the choice of basis
sets. This suggests that understanding through resonance
structure offers a robust and adequate description of
molecular electronic structure. Furthermore, our method
is very easy to use, and only standard localization
procedure is required to obtain the resonance weights.
From these results, the method could be a promising tool
for analyzing molecular orbitals. On the other hand, it is

difficult to apply the method when successful localization
is not performed. For example, the electron in the
transition state of a reaction inherently spreads over the
reaction system, and the one- or two-center orbital picture
is no longer valid. Extension to correlated wave function
is also interesting. Further work along this line is currently
in progress and will be reported elsewhere.
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Abstract: Because of its construction and parametrization for more than 80 elements, the
semiempirical quantum chemical PM6 method is superior to other similar methods. Despite its
advantages, however, the PM6 method fails for the description of noncovalent interactions,
specifically the dispersion energy and H-bonding. Upon inclusion of correction terms for dispersion
and H-bonding, the performance of the method was found to be dramatically improved. The
former correction included two parameters in the damping function that were parametrized to
reproduce the benchmark interaction energies [CCSD(T)/complete basis set (CBS) limit] of the
dispersion-bonded complexes from the S22 data set. The latter correction was parametrized
on an extended set of H-bonded stabilization energies determined at the MP2/cc-pVTZ level.
The resulting PM6-DH method was tested on the S22 data set, for which chemical accuracy
(error < 1 kcal/mol) was achieved, and also on the JSCH2005 set, for which significant
improvement over the original PM6 method was also obtained. Implementation of analytical
gradients allows very efficient geometry optimization, which, for all complexes, provides better
agreement with the benchmark data. Excellent results were also achieved for small peptides,
and here again, chemical accuracy was obtained (i.e., the error with respect to CCSD(T)/CBS
results was smaller than 1 kcal/mol). The performance of the technique was finally demonstrated
on extended complexes, namely, the porphine dimer and various graphene models with DNA
bases and base pairs, where the PM6-DH stabilization energies agree very well with available
benchmark data obtained with DFT-D, SCS-MP2, and MP2.5 methods. The PM6-DH calculations
are very efficient and can be routinely applied for systems of up to 1000 atoms. For nonaromatic
systems, the use of a linear scaling version of the SCF procedure based on localized orbitals
speeds up the method significantly and allows one to investigate systems with several thousand
atoms. The method can thus replace force fields, which face basic problems for the description
of quantum effects, in many applications.

Introduction
Noncovalent interactions are of fundamental importance for
chemistry and molecular biology disciplines. Theoretical

description of these interactions is difficult, mainly because
they are much weaker than covalent interactions and also
because of the key role played by the London dispersion
energy. The proper description of these interactions thus
requires recovering a large portion of the correlation energy
and the use of an extended atomic orbital (AO) basis set. It
is now evident that the coupled-cluster method considering
the single and double electron excitations iteratively and the
triple excitations perturbatively [CCSD(T)] using an extended
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basis set, or even performed at the complete basis set (CBS)
limit,1,2 provides accurate energies and other characteristics
for different types of noncovalent complexes.3 The CCSD(T)/
CBS method is a genuine ab initio method (i.e., no empirical
or experimental characteristics are utilized), but its use for
larger systems is limited because of its N7 scaling with the
size of system (N is the number of AOs). All other
nonempirical wave function (WF) and density functional
theory (DF) quantum mechanical (QM) theories applicable
in this field use one or more empirical characteristics mostly
parametrized to the benchmark CCSD(T) data. These theories
provide static characteristics of noncovalent interactions, and
despite better scaling with the size of system, their use is
limited to complexes having a maximum of several dozens
to several hundreds of atoms. For the description of systems
with several thousands of atoms as well as for the under-
standing of their dynamics, much faster computational
procedures should be applied, and molecular mechanics
(MM) methods (also called empirical potentials) play an
indispensable role here. These methods are efficient enough
and provide surprisingly reliable characteristics for various
types of noncovalent complexes. The serious drawback of
these methods is the fact that they cannot describe quantum
effects. The most important among these effects are breaking
and formation of a covalent bond, changes in electronic
structure of various conformers of complex molecular
systems, cooperativity effects, charge transfer, and chemical
reactions.

Two different approaches can be utilized to solve these
problems. The first represents the use of quantum mechanics
coupled with molecular mechanics (QM/MM). This ap-
proach, however, is still not efficient enough for extensive
sampling of the configuration space of complex molecular
systems, and further, it is not free of problems related to the
cutting of the chemical bond at the QM/MM boundary. The
application of semiempirical QM methods represents another
approach. Semiempirical QM methods properly and fully
describe all quantum effects mentioned above. Because they
were parametrized for covalent bonding, however, their use
for noncovalent complexes is not straightforward. Also, in
contrast to the nonempirical Hartree-Fock method, which
does not recover the correlation energy (and, consequently,
also does not recover the London dispersion energy, which
forms the dominant part of the intersystem correlation
energy), all QM semiempirical methods do account for the
dynamic correlation via the scaling of the two-electron
integrals, but they do not [without configuration interaction
(CI)] include a nondynamic correlation. This situation is
identical to the DFT method, where the empirical dispersion
correction is applied with great success.

Hydrogen bonding is another important issue in semiem-
pirical QM methods. The original MNDO4,5 (modified
neglect of differential overlap) method was not able to
describe H-bonding at all. This serious problem was ad-
dressed in later MNDO-based methods (AM1,6 PM3,7,8 and
others) through the introduction of additional core-core
interaction terms and parametrization of the method to
reproduce hydrogen bonding. Such a treatment is only
empirical, however, and does not solve the problem com-

pletely. AM1 was able to describe the interaction, but it
yielded incorrect geometries, often featuring bifurcated
hydrogen bonds. Another step forward was introduced in the
parametrization of the PM3 method, where the geometry of
H-bonded complexes was emphasized. Recently, a special
parametrization of the PM3 method, PM3(BP), was intro-
duced9 for application of the method to nucleic acid base
pairs. Density functional tight-binding,10 a semiempirical QM
method with parameters adjusted according to density
functional considerations, also has problems with hydrogen
bonding. These are discussed and addressed in ref 11. An
overview of the problem is provided in ref 12. A possible
future development toward improving H-bonds within the
MNDO framework is outlined in this work, but no further
progress has been reported up to now. In general, currently
used semiempirical QM methods systematically underesti-
mate the strength of H-bonds by approximately 20-30%.
Surprisingly, the problems of semiemprical QM methods
with the lack of dispersion energy, which were believed to
be more serious, were removed rather easily. Already in
2001,13 Elstner and one of us (P.H.) modified the semiem-
pirical tight-binding DFT technique by the simple addition
of an empirical London dispersion energy, which dramati-
cally improved the performance of the method toward the
dispersion-bound noncovalent complexes (e.g., stacked DNA
base pairs). Martin and Clark14 introduced an additional term
to treat the dispersion in NDDO-based semiempirical quan-
tum chemical techniques (where NDDO is neglect of
diatomic differential overlap). The dispersion energy was
calculated using additive “atomic orbital” polarizability
tensors. A similar procedure was used later for the modifica-
tion of AM1, PM3, and OM-x semiempirical methods,15,16

and in all of these cases as well, much better performance
toward dispersion-bound complexes resulted. Unfortunately,
for various reasons (parametrization for only a limited
number of atoms, strongly overestimated stabilization ener-
gies for optimized geometries of H-bonded complexes), these
methods are still not accurate enough for most applications
in complex molecular systems.

Recently, the new semiempirical method PM6 (parameter-
ized model 6) was introduced,17 which is superior to other
semiempirical QM methods in various aspects. It is an
NDDO-based method improved by the adoption of Viotyuk’s
core-core diatomic interaction term18 and Thiel’s d-orbital
approximation.19-21 These modifications allowed param-
etrization of 80 elements and also reduced the error for main-
group elements.17,22 The good performance of this method
and its applicability to a wide range of problems are the
reasons why we selected the PM6 method for further
improvement in the direction of noncovalent interactions.

PM6 is available in the MOPAC code23 from version 2007
and also in the VAMP 10.0 program.24 The latest version
of MOPAC, MOPAC 2009, introduces another interesting
feature that makes the PM6 method usable for very large
systems: a linear scaling version of the self-consistent
field (SCF) procedure using localized orbitals, named
MOZYME.23

Despite all these advantages, the PM6 method still lacks
the ability to accurately describe noncovalent interactions,
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specifically the dispersion energy and hydrogen bonding.
Even though the method yields surprisingly good geometries
of all types of complexes, the interaction energy for
dispersion-bound and H-bonded complexes is substantially
underestimated. We believe that common NDDO param-
etrizations do not reproduce hydrogen bonds well. General
suggestions as to how to improve semiempirical methods
toward reliable description of H-bonds are provided in ref
32. Jug and Geudtner25 also reported a variant of the SINDO
(symmetrically orthogonalized intermediate neglect of dif-
ferential overlap) method using a p-polarization function on
hydrogen to improve the description of hydrogen bonds.
However, there is no readily available and applicable method
that would give acceptable results for noncovalent interac-
tions. Let us recall once again that, among all widely used
ab initio QM procedures (i.e., methods that do not use any
empirical or experimental parameters), it is only the CCSD(T)/
CBS technique that satisfactorily describes both of these
interactions.

In the present study, we introduce an extension of the PM6
method in two directions: (i) including an empirical disper-
sion energy term that improves the description of complexes
controlled by the dispersion energy and (ii) introducing an
additional electrostatic term that improves the description
of hydrogen-bonded complexes. The resulting method, PM6
with corrections for dispersion and hydrogen bonding, is
named PM6-DH. The aim is ambitious: for extended
noncovalent complexes to achieve standard ab initio chemical
accuracy (∼ 1 kcal/mol). Because of favorable scaling of
the code, we would also like to use it in MD simulations.
Therefore, in addition to single-point calculations, we also
carefully tested the performance of the method when the full
gradient optimization was adopted. It should be remembered
that just this point was critical for the application of other
semiempirical QM methods.

This article also presents benchmarks of the method and
a comparison to other methods with a comparable range of
applications. The first tests concerned the stacking interac-
tions. Specifically, we investigated the interaction of two
porphine molecules, as well as the interaction of various
graphene models with nucleic acid bases and base pairs. In
the next step, we compared a more complex system that
contained both characteristic interaction types, stacking as
well as H-bonding. We studied the interaction of DNA with
4′,6-diamidino-2-phenylindole (DAPI), a fluorescent dye that
can bind both in the minor groove of the double helix and
as an intercalator. Interaction energies obtained with PM6-
DH were compared with benchmark calculations in these
examples. Finally, as a last example, a DNA tetramer was
optimized using the PM6 and PM6-DH methods. The
structure of the DNA fragment was determined by both
stacking and H-bonding, and this test example was selected
to demonstrate the performance of PM6-DH toward the
important world of nucleic acids. Another reason supporting
this point is the recent finding that the description of the

DNA double-helical structure requires inclusion of the
dispersion energy.26

Methods

Dispersion Correction. The first step in improving the
PM6 method was the addition of an empirical dispersion
term. This was not a difficult task, because the London
dispersion term is well separated from the QM calculation
and thus transferable between various methods. Using our
experience with empirical dispersion in the Hartree-Fock
and density functional theory (DFT) methods,27-30 including
semiempirical tight-binding DFT,13 we have adopted the
formalism described in the work of Jurecka et al.30

The correction has the form of a pairwise interatomic force
field

It consists of the physically sound r-6 term, damped at short
distances to avoid interfering with the underlying QM
potential, that describes the short-range repulsion correctly.
Atomic parameters, namely, atomic van der Waals radii (Rij

0)
and C6 coefficients, are independent of the QM method and
were adopted from the original work. Two parameters in
the damping function, the scaling factor for the radii sr and
the exponent R that affects the slope of the damping, were
optimized to reproduce interaction energies of dispersion-
bonded complexes. A subset of the S22 benchmark data set31

with hydrogen-bonded complexes removed was used in the
fit. Omitting hydrogen-bonded complexes from the training
set should yield a better description of the dispersion-bonded
complexes; the errors in hydrogen bonds are corrected
separately.

The PM6 method with the dispersion correction only is
abbreviated as PM6-D in this article.

Hydrogen-Bond Correction. Improving hydrogen-bond-
ing interactions is not as straightforward as correcting
dispersion interactions because the electrostatic term, mainly
responsible for the description of H-bonding, was included
in the original parametrization. Previous attempts to improve
the hydrogen-bond description were done at the level of
modifying the semiempirical method itself or reparameter-
izing it.11,12,32 Because these attempts have not solved the
problem, we decided to take another approach. Inspired by
the success of the dispersion correction, we aimed to
introduce a specific correction that would affect only
hydrogen bonds, added on top of an unmodified semiem-
pirical calculation.

Training Set of 104 Hydrogen-Bonded Complexes. The
first step in this work was the preparation of an extensive
training set of model hydrogen-bonded complexes. We
designed the set to cover different types of hydrogen bonds
present in biomolecules and organic compounds. Therefore,
the training set was composed of 104 hydrogen-bonded
complexes formed from the proton donors acetylamine, acetic
acid, dimethylamine, phenol, methanol, methylamine, phe-
nylamine, peptide bond, pyrrol, uracil, water molecule, and
1-imino-3-aminocyclohexane, along with the proton accep-
tors acetic acid, dimethyl amine, phenylamine, phenylm-

∑ Edis ) -∑ fdamp(rij, Rij
0)C6ijrij

-6 (1)

Augmented PM6 Method for Noncovalent Complexes J. Chem. Theory Comput., Vol. 5, No. 7, 2009 1751



ethylamine, furan, methanol, methylamine, propanol, peptide
bond, pyrazine, uracil, water molecule, and 1-imino-3-
aminocyclohexane. The reference geometries were obtained
by RI-MP2/cc-pVTZ gradient optimization, which is
known33 to provide reliable results for various types of
noncovalent complexes, including the presently investigated
H-bonded ones.

The dissociation curve (scan of the interaction energy as
a function of the hydrogen-bond distance) of each of these
complexes was calculated using the accurate SCS(MI)-MP2/
cc-pVTZ method,34,35 with the counterpoise correction to
eliminate basis set superposition error. This method is
parametrized to yield highly accurate interaction energies,
while being efficient enough for this task. It should be
recalled that the SCS(MI)-MP2 method provides reliable
interaction energies not only for stacked complexes (similarly
to the original SCS-MP2 technique) but also for H-bonded
ones where the SCS-MP2 technique failed. With 14 points
per dissociation curve, about 1500 interaction energies had
to be calculated to prepare the training set. The calculations
were performed using Turbomole 5.9.36

The same curves were then calculated using PM6 with
the dispersion correction. With this information, we then
analyzed the distance-dependent behavior of the error to
design the form of the correction.

Selection of Possible H-Bonds. Prior to the calculations,
all possible hydrogen bonds were determined from the
topology. All possible combinations of hydrogens bonded
to an electronegative atom (elements N and O) and electro-
negative hydrogen acceptors (N, O) were listed. Then, all
pairs in the 1-4 configuration (i.e., in the H-X-Y-acceptor
pattern) were removed from the list, because they cannot
form hydrogen bonds.

The correction was calculated for all of these possible
pairs, with the form of the correction ensuring that only the
actual hydrogen bonds contributed significantly to the total
energy.

Atom Types. An important finding was that there is a
significant difference between hydrogen groups with nitrogen
as the acceptor and those with oxygen as the acceptor. Further
sorting of the error curves showed that there are differences
in hydrogen bonds between the elements and that these
differences can be correlated with the valence state and
environment of the atoms. Later, optimization of different
models confirmed that the introduction of atom types is
necessary to describe all types of hydrogen bonds accurately.

Rather than using atom types directly, we selected only
their combinations that show different behavior and intro-
duced “hydrogen-bond types” to reduce the number of
parameters in the model. This step, of course, makes the
correction rather empirical and is a source of several
limitations, but it is, in our opinion, worth the improved
accuracy.

The hydrogen-bond types are as follows:
(1) nitrogen with no hydrogens bonded to it (mostly in

aromatic rings) interacting with any hydrogen,
(2) nitrogen with one hydrogen (secondary amines)

interacting with any hydrogen,

(3) nitrogen with two or more hydrogens (primary amines,
ammonia) interacting with any hydrogen,

(4) oxygen except carbonyl interacting with HN,
(5) carbonyl oxygen interacting with HN,
(6) oxygen interacting with HO hydrogen different from

7 and 8,
(7) oxygen interacting with H in a water molecule, and
(8) oxygen interacting with H in a carboxyl group.
The first limitation that arises from the introduction of

hydrogen-bond types is that the method can be applied only
to hydrogen bonds for which it was explicitly parametrized.
In this work, we attempted to cover all hydrogen bonds in
organic compounds involving nitrogen and oxygen. The
extension of this set would be straightforward, as there is
no reason to believe that the same correction cannot be
applied to other elements. We plan to further improve the
method, and extending the set of parameters is one of the
goals toward this end. Specifically, the addition of parameters
for sulfur is necessary for full coverage of the interactions
in proteins.

The second limitation directly connected to the hydrogen-
bond types in the current implementation is that the bond
types are determined only once (at the beginning of the
calculation), even for calculations where the geometry can
change (i.e., in optimization). This prevents the method from
being used to study processes where the valence states of
the atoms involved in hydrogen bonds change, because the
valence state is what determines the bond type used. The
most obvious example of such a reaction is a proton transfer.
A simple re-evaluation of the bond types in each step of the
calculation would not correct this problem, because the
potential energy surface would become discontinuous. On
the other hand, this limitation merely prevents the method
from being used to study the intermediates of such a reaction.
When the reactants and products are studied separately, the
different bond types can be readily assigned.

Form of the Correction. Most of the error curves
(constructed as energy differences between the benchmark
and PM6-D) are similar to the function -1/r, which is in
agreement with the Coulomb nature of hydrogen bonds. It
is obvious that the form of the correction should be similar
to the formula for an electrostatic interaction. In some cases,
especially in hydrogen bonds of the XH · · ·O type, there is
a repulsion at shorter distances, and the correction sometimes
becomes positive. An exponential term was added to describe
this effect.

Hydrogen bonds differ in their strengths, and so does the
correction. Models that do not take this fact into account
are not very accurate. To cover these differences, we used
partial atomic charges from the PM6 calculations (obtained
using Mulliken population analysis) on the hydrogen and
on the acceptor. The product of these two charges correlates
reasonably well. We tested many different formulas, but the
one based on the interaction energy of a point charge and a
dipole worked best. Unlike charge-charge interactions,
which have an r-1 dependence, the distance dependence in
the present formula is r-2, and there is an angular part
calculated from the angle of the three atoms involved in the
hydrogen bond. This angular part is crucial, because the
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core-core interaction introduced in semiempirical methods
(including PM6) to improve hydrogen bonding is not
directional, whereas in reality, H-bonds are very sensitive
to the spatial arrangement. Combined together, the final
formula for the correction energy (EHB) term in hydrogen
bond XH · · ·Y is

where r is the H · · ·Y distance and θ denotes the angle XHY.
c, crep, and A are parameters fitted to obtain the best results
over the training set.

It must be emphasized that many different models of the
correction term were tested, but the one presented here was
found to yield the best results.

To prevent problems arising from calculation of pairs in
the Y · · ·XH geometry (for example, within a single molecule
with more electronegative atoms), an additional rule was
added, and pairs with θ < 90° were not calculated, because
they certainly are not hydrogen-bonded.

Optimization Procedure. Different types of hydrogen
bonds cannot be parametrized separately, because the
contribution of each possible hydrogen bond is calculated
in the complex. To gain more control over the fitting
procedure, we used gradient optimization of an arbitrary error
function, based on numerical gradients of the fitted coef-
ficients. The Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm was used to make the optimization efficient. This
setup, in contrast to the least-squares method normally used
in similar applications, allowed us to experiment with
different goals of the optimization. We used two measures
of the quality of the fit: the mean absolute error, eavg, and
the maximum absolute error, emax. The error function that
was minimized by the optimization procedure was a com-
bination of these error measures in variable ratio. We did
multiple optimizations with different ratios of eavg and emax

to find the best compromise in usability of the fitted method.
Implementation. The basis for our work was the PM6

method implemented in the MOPAC2007 package.23 The
corrections were calculated on top of the finished PM6
calculation, which makes them independent of the PM6 code
itself. For the purpose of development of the method, we
developed our own code that calls MOPAC for the PM6
calculation and adds the corrections to the result. The latest
version of this software has been made available to the public
and can be obtained from the authors upon request (http://
www.molecular.cz/∼rezac/pm6dh.html).

To make the method more useful, we calculated the
gradients of both corrections. For the dispersion correction,
this was a straightforward task, because the correction was
completely separated from the underlying PM6 calculation.
The situation was more complicated in the case of the
H-bonding correction, which used atomic charges from the
PM6 calculation. Determination of the true analytical gradient
would require calculation of the derivatives of these charges
with respect to nuclear coordinates, which would make the
calculation more expensive. In addition, such a calculation
is not possible in the current implementation. We made use
of the fact that the charges varied only slightly and considered

them to be constant to calculate an estimate of the gradient.
To justify this approach, we compared this estimate to a full
numerical evaluation of the gradients. We found that the
differences in the gradient itself and, more importantly, in
the optimized energy and geometry were very small and
below the convergence limits used in the optimization.

The BFGS optimizer working in Cartesian coordinates is
part of the final code.

Validation Sets. The PM6-DH method was tested on
multiple sets of benchmark data available from the BEGDB
database.37 All of these data sets feature high-quality
geometries and energies extrapolated to the CCSD(T)/CBS
level.

First, the results were compared to the S22 data set,31

which includes model complexes covering hydrogen-bonding
and dispersion interactions. In this case, both energies and
optimized geometries were utilized. The fact that geometries
were tested along with the energies is important because all
previous semiempirical QM procedures were tested only for
stabilization energies and, on the basis of our experience,
their application to geometry optimization is not straight-
forward. Second, the JSCH2005 database31 of DNA base
pairs in various geometries and some amino acid pairs was
used as an example of biologically relevant complexes.
Finally, we tested the PM6-DH method in an application
different from the calculation of interaction energies (i.e.,
molecular clusters). The last test was therefore the calculation
of the relative stability of conformers of small peptides.38

In the original work featuring this data set, it was shown
that this is a very sensitive measure of the quality of
computational methods, and a comparison with benchmark
energies is available.

Results

Parameterization of Dispersion Corrections. There were
only two parameters to be adjusted in the damping function
in the empirical dispersion term. Calculation of the correction
was very fast, so we performed a complete 2D scan instead
of optimization to obtain the values corresponding to minimal
error, expressed as the average absolute value of the
difference between PM6-D and the benchmark energy over
the training set. This procedure led to sr ) 1.07 and R ) 11
with eavg ) 0.4 kcal/mol for stacked structures within the
S22 benchmark data set.31

Parameterization of H-Bond Correction. Optimization
of the parameters in the H-bond correction was done in two
steps to increase the efficiency of the process. In the first
round, only optimal geometries of the complexes in the
training set were used in the optimization. The resulting set
of coefficients was then used as a starting point for a second
round, in which all geometries along the dissociation curve
were taken into account.

We tested error functions (the optimized value) with
various ratios of the mean and maximum errors, observing
the impact on the results. The best error function, which was
used to derive the presented parameters, consisted of 90%
of the mean error and 10% of the maximum error. Increasing
the fraction of the mean error brought no significant

EHB ) c[q(H) q(Y)/r2 cos(θ) + crepA
-r] (2)
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improvement in eavg, but resulted in an increase in emax. For
the opposite change, emax was improved only marginally,
whereas eavg became too large. A mean error of 0.8 kcal/
mol was achieved for the training set.

Parameters obtained from the optimization are listed in
Table 1. Note that the coefficient scaling the repulsion term
is negative in some cases. The exponential term is thus no
longer repulsive, but it further enhances the attraction,
improving the potential of the electrostatic correction where
needed. We tried to constrain these coefficients to be non-
negative, but the final results were worse. This issue reflects
the major difference between oxygen and nitrogen hydrogen
bonds in the PM6 method. (Data demonstrating their different
natures are provided in the Supporting Information.) We
understand that changing the sign of a term that was
originally designed to be repulsive makes our correction
further decline from a physically sound formulation, but our
goal was to develop an empirical correction, focusing mainly
on the final accuracy.

The validation sets yielded a slight increase in the error
when the H-bond correction was added to dispersion-bonded
complexes that contained heteroatoms that could be involved
in hydrogen bonds. We tried to address this problem by a
more localized variant of the correction, with a cutoff that
would eliminate all contributions that were not real hydrogen
bonds. However, the overall results were worse.

Geometry Optimization. After the correction energy term
was established, it was tested in geometry optimization to
verify its performance. The method was found to yield good
geometries, as discussed below, with one exception. In the
H-bonded adenine-thymine base pair, we observed a proton
transfer along one of the hydrogen bonds, as the gradient of
the H-bond correction overpowered the reaction barrier. This
happened because the possible hydrogen bonds were deter-
mined from the geometry of the initial state, so there was a
force driving the hydrogen in one direction but not in the
other. The gradient was very steep in this region; here, it
became an incorrect extrapolation from the potential at larger
distances.

To solve this problem, we had to modify our potential. It
had the original form as long as the YH distance (in the
Y · · ·HX arrangement) was above a certain limit and re-
mained constant at shorter distances. We set the limit at 1.8
Å, the YH distance in the shortest H-bonds in our training
set. This can be easily achieved by using the following rule
to determine the value of r in eq 2

The resulting potential has a constant energy and a zero
gradient at very short distances, which prevents the anoma-
lous behavior observed before. We tested this modification
extensively and found it to be safe. It does not affect
calculations in a fixed geometry; it only eliminates the rare
problem of geometry optimization described above. This
modification was used for all calculations presented here and
was implemented in the PM6-DH code.

Tests on Benchmark Data. S22 Data Set. The S22 data
set is our first choice for evaluating the accuracy of a method
in describing noncovalent interactions. It contains complexes
featuring hydrogen bonds, dispersion interactions, and their
combinations. Biomolecules are represented here by base
pairs in both stacked and Watson-Crick (WC) arrangements.

Our first test was an analysis of interaction energies
calculated with the PM6, PM6-D, and PM6-DH techniques
on the S22 data set. The results are summarized in Table 2,
and their differences from the benchmark CCSD(T)/CBS data
are plotted in Figure 1. For comparison, we include interac-
tion energies calculated at the much more expensive MP2/
cc-pVTZ level (corrected for basis set superposition error).

The performance of the unmodified PM6 is rather poor.
The mean absolute error (eavg) is 3.4 kcal/mol, and the
maximum absolute error (emax) is 7.5 kcal/mol, occurring in
the formic acid dimer. PM6-D brings a great improvement
in complexes dominated by dispersion, which reduces eavg

to 1.4 kcal/mol, but the maximum error remains high, 6.5
kcal/mol. Finally, by combining the dispersion correction
with the correction for hydrogen bonds in PM6-DH, both
sources of error are addressed, and the results improve
significantly. The mean absolute error is 0.6 kcal/mol, and
emax is reduced to 1.8 kcal/mol. These results are even better
than in the MP2/cc-pVTZ calculation, for which the mean
error is 0.7 kcal/mol and the maximum error is 1.9 kcal/
mol.

The errors worsen slightly for the calculation of interaction
energies on structures optimized with PM6-DH itself, with
eavg ) 0.8 kcal/mol and emax ) 2.8 kcal/mol. A possible
source of this error is discussed later in this article. However,
this behavior is specific only to the strongest hydrogen bonds,
and the optimization generally improves the results. Impor-
tantly, geometry optimizations performed with other semiem-
pirical QM techniques led to considerably worse results.

It is clear from the results presented that the correction
for hydrogen bonding is less perfect than that for dispersion.
The complexes with the largest errors are hydrogen-bonded,
and the errors can be both positive and negative. The
hydrogen-bond correction also introduces some small error
into some dispersion-bonded complexes. These are the
limitations of the simple form of our correction and its
empirical nature. Nevertheless, these errors are very small
compared to those obtained with the uncorrected PM6
method, and the overall accuracy is on a par with that of
expensive correlated ab initio calculations.

Finally, we tested PM6 and its modifications for the
optimization of the S22 complexes. In general, the results

Table 1. Fitted Coefficients in the H-Bond Correction for
Hydrogen-Bond Types Discussed in the Texta

bond type no. c crep A

1 14.4209 -1.3273 × 10-2 7.2847
2 73.3566 -5.3979 × 10-4 7.0920
3 48.7161 2.9844 × 10-4 6.4259
4 29.8036 2.1262 × 10-3 6.9768
5 -6.4578 7.3142 × 10-3 7.8379
6 23.1582 -4.8015 × 10-5 6.9382
7 15.3029 2.0789 × 10-3 7.0365
8 14.8668 -4.6652 × 10-3 6.9111

a Coefficients derived using the following units in eq 2:
elementary charge, Å, and kcal/mol.

r ) {r for r > 1.8
1.8 otherwise

(3)
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were very good even for PM6, and they did not improve
when the corrections for dispersion and H-bonding were
introduced. The root-mean-square deviation (rmsd) upon
optimization, starting from the benchmark geometry, was
0.14 Å for PM6, 0.13 Å for PM6-D, and 0.15 Å for PM6-
DH. The hydrogen-bond correction actually made the
geometries slightly worse. This effect was more pronounced
in complexes featuring very strong H-bonds, such as the

formic acid dimer. The problem can be attributed to the form
of the correction and the description of hydrogen bonds in
the semiempirical method itself. In both cases, the potential
responsible for hydrogen bonding acts between the nuclei,
but in reality, the hydrogen bond forms between the lone
pair on the proton acceptor and an antibonding orbital of
the XsH bond of the proton donor. An important feature of
H-bonding, namely, its directionality, is due to this point.

Table 2. Interaction Energy Errors (in kcal/mol) for the S22 Set of Complexes, Calculated as Differences between the
Studied Method and the Benchmark CCSD(T)/CBS Results, in kcal/mola

MP2/cc-pVTZ PM6 PM6-D PM6-DH
PM6-DH

optimizedb

ammonia dimer 0.40 0.86 0.33 -0.57 -0.75
water dimer 0.59 1.08 0.70 0.35 0.29
formic acid dimer 1.72 7.47 6.47 1.22 -0.50
formamide dimer 1.71 3.41 2.19 0.57 0.95
uracil dimer (H-bonded) 1.91 7.33 5.55 1.81 1.10
2-pyridoxine · · ·2-aminopyridine 0.80 6.73 4.51 -0.64 -1.79
adenine · · · thymine (WC) 1.45 7.31 4.90 -1.46 -2.75
methane dimer 0.21 0.47 -0.20 -0.20 -0.20
ethene dimer 0.36 1.11 -0.01 -0.01 -0.02
benzene · · ·methane 0.09 1.03 -0.25 -0.25 -0.38
benzene dimer (stacked) -1.03 2.86 -0.89 -0.89 -0.86
pyrazine dimer -1.02 2.61 -0.99 -0.99 -1.32
uracil dimer (stacked) 1.03 5.66 0.53 0.42 0.09
indole · · ·benzene (stacked) -1.22 5.29 0.02 0.02 -0.77
adenine · · · thymine (stacked) -0.07 7.29 -0.04 -0.55 -1.38
ethene · · ·ethine 0.10 0.98 0.42 0.42 0.36
benzene · · ·water 0.35 1.00 -0.13 -0.13 -0.67
benzene · · ·ammonia 0.22 0.82 -0.42 -0.42 -1.47
benzene · · ·HCN -0.14 2.48 1.26 1.26 1.25
benzene dimer (T-shaped) -0.27 1.99 -0.10 -0.10 -0.11
indole · · ·benzene (T-shaped) -0.43 3.33 0.43 0.43 0.51
phenol dimer 0.34 3.67 1.33 0.32 -0.41

eavg
c 0.7 3.4 1.4 0.6 0.8

emax
c 1.9 7.5 6.5 1.8 2.8

a High-quality geometries from the S22 database used unless otherwise noted. b Geometries optimized using the PM6-DH method.
c Mean and maximum absolute errors used as a measure of the quality of the method.

Figure 1. Interaction energy errors in the S22 set of complexes, plotted as the difference between the studied method and
benchmark CCSD(T)/CBS results.
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Our simple model does not cover this difference while
making the interaction stronger, which leads to slightly
distorted geometries. This fact should be considered when
PM6-DH is used, but the benefits of more accurate interaction
energies are much more important. Proper energetics for
noncovalent interactions would also improve geometries in
more complex structures where intramolecular and/or inter-
molecular interactions and their balance with other forces
are crucial.

JSCH2005. A further step in the evaluation of PM6-
DH was to extend the validation set. We used the
JSCH2005 data set31 for this purpose. It consists of DNA
base pairs in various geometries and some complexes of
amino acids in arrangements found in proteins. In this
step, only the interaction and/or relative energies were
considered (i.e., no geometry optimization was performed).
These complexes were divided into several groups for the
analysis. First, we examined separately all complexes of
neutral molecules and all charged complexes, because the
magnitudes of the interactions are different. In addition,
we evaluated the error measures in the groups of hydrogen-
bonded base pairs, stacked base pairs, and amino acid
complexes. The results, again in terms of average and
maximum absolute difference from CCSD(T)/CBS value,
are presented in Table 3.

Several important conclusions can be drawn from these
results. The first is the progressive improvement of the results
when the corrections are added to PM6 calculations, with
the PM6-DH method reaching an average error of only 1.6
kcal/mol for the neutral complexes. The error for the charged
complexes, the amino acid ion pairs, is much larger, but this
is because the interaction energy itself is very large. When
the errors are made relative to the magnitude of the
interaction, the percentage errors become very similar.

Second, these data show that the corrections improve
interaction energies in complexes of charged molecules, even
though they were parametrized only for neutral ones.

Finally, this large validation set shows that the descriptions
of different types of interactions are similar; the method can
thus handle both hydrogen bonds and dispersion in a
balanced way.

It should be noted that these complexes are the most
difficult ones to describe with our method. The hydrogen-
bonded base pairs feature strong, cyclic hydrogen bonds for
which additional cooperativity of the bonds is important,
whereas the correction was parametrized on model com-
plexes featuring single hydrogen bonds. The same applies
for stacked bases here, because the molecules feature multiple
sites that could be involved in hydrogen bonds. The
dispersion energy in nonpolar molecules is easier to describe,
and the error can be much smaller, as demonstrated for the
S22 set.

Peptides. In our previous work,38 we thoroughly investi-
gated the performance of a wide range of computational
methods for the calculation of conformational energies of
small peptides. This turned out to be a very sensitive test
case, and not many methods were found to yield satisfactory
accuracy. Standard force field methods had problems38 with
atomic charges because these charges depend on the peptide
conformation. The stability of the conformers is often
determined by intramolecular noncovalent interactions, mainly
hydrogen bonds, when present, and the dispersion energy,
in peptides containing aromatic amino acid residues. The high
sensitivity of the description of noncovalent interactions and
the availability of benchmark energies and geometries make
this data set very important for the evaluation of the PM6-
DH method. The application of semiempirical QM methods

Table 3. Analysis of Uncorrected and Corrected PM6
Results for the JSCH2005 Database Featuring
Biomolecular Complexesa

complex PM6 PM6-D PM6-DH

eavg (kcal/mol)
all neutral 4.5 2.2 1.6
DNA bases 4.7 2.3 1.6
DNA bases, H-bonds 7.7 5.3 1.9
DNA bases, stacked 3.6 1.2 1.5
amino acids, neutral 3.1 0.9 1.0
amino acids, charged 20.5 17.7 17.5

eavg (%)
all neutral 52 25 18
DNA bases 51 25 17
DNA bases, H-bonds 42 29 10
DNA bases, stacked 61 20 26
amino acids, neutral 67 20 22
amino acids, charged 24 21 20

emax (kcal/mol)
all neutral 12.1 7.9 6.1
DNA bases 12.1 7.9 6.1
DNA bases, H-bonds 10.7 7.9 4.3
DNA bases, stacked 12.1 6.5 6.1
amino acids, neutral 6.4 3.2 3.3
amino acids, charged 30.1 26.0 25.7

a Errors compare PM6-based calculations to benchmark CCSD(T)/
CBS results.

Table 4. Mean and Maximum Absolute Errors (in kcal/mol)
of PM6-Based Methods Compared to CCSD(T)/CBS
Conformer Energies in a Set of 76 Peptides

method

MP6 PM6-D PM6-DH
PM6-DH
optimized MP2/cc-pVTZ

eavg (kcal/mol) 1.66 1.76 1.04 0.89 0.92
emax (kcal/mol) 4.69 4.36 5.46 3.31 2.64

Figure 2. Comparison of DFT, RI-DFT, PM6, and PM6-
MOZYME computational resources required for one SCF
cycle on a single protein molecule. Note that the horizontal
axis is logarithmic to accommodate the studied range of
molecule sizes.
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in this field is important because empirical potentials, which
are usually applied, have failed to describe the variability of
atomic charges for different conformers.

On the set of 76 structures of FGG, GFA, GGF, WG and
WGG peptides, the relative energies of the conformers
(taking the average energy for the same peptide as the zero
level) were calculated using PM6, PM6-D, and PM6-DH
with the original geometries and also using geometries
optimized with PM6-DH. Mean and maximum absolute
errors [compared to CCSD(T) relative energies] are listed
in Table 4. MP2/cc-pVTZ results from the original work are
included for reference.

Achieving an average error of 1.04 kcal/mol with PM6-
DH is a very encouraging result. Even more importantly,
the errors were reduced by geometry optimization. In the
optimized structures, we achieved the limit of chemical
accuracy, 1 kcal/mol. Note that these results are comparable
to those of the considerably more expensive MP2/cc-pVTZ
calculations.

Timing. A comparison of the timing of DFT, the
resolution of the identity (RI) approximation to DFT, PM6,
and PM6-MOZYME was done on model peptides and
proteins. In-silico-built poly(glycine) helices covered the
smaller testing systems; experimental protein geometries
(PDB numbers 2BEG and 1AFW) served as the largest
testing systems. All calculations were run on the same
computer featuring a single 2.4 GHz Intel processor. The
results are shown in Figure 2. The Meta-GGA functional
TPSS and the TZVP basis set were used for both DFT
and RI-DFT calculations. Obviously, the current limit of
the DFT method is placed at around 100 atoms. The RI
approximation39 to the DFT method allows for the
treatment of several hundreds atoms. The NDDO ap-
proximation within the PM6 method reduces the compu-
tational cost and places the limit of semiempirical methods
at around 1000 atoms. The use of the localized molecular
orbital method (MOZYME) speeds up the PM6 method
significantly and allows for the calculation of systems
having several thousand atoms. Following expectations,
the localized molecular orbital method was found to be
effective only in the case of systems with localized
electrons (e.g., amino acids, peptides, proteins). For
aromatic systems (such as DNA bases), the acceleration
of the calculation resulting from the use of MOZYME
option was less dramatic. Notice that the largest models
(real proteins) contained aromatic groups, such as phe-

nylalanine. The number of such residues, however, is
considerably smaller than the number of nonaromatic ones.
In the case of DNA, the ratio of aromatic residues is much
higher.

Application Examples. Porphine Dimers. Stabilization
energies of various structures of the porphine (the simpliest
porphyrine macrocycle) dimer were determined using the
PM6-DH technique and these energies were compared to
reference data from the work of Muck-Lichtenfeld and
Grimme,40 calculated using DFT-D/B97 and SCS-MP2
[with application of the TZV(2df,2pd) basis set in both
cases], as well as our DFT-D TPSS/TZVP and MP2.5/
CBS [E(2) correction from CBS and scaled E(3) correction
from TZV] calculations.41 Table 5 shows that the PM6-
DH stabilization energies agree very well with the most
reliable MP2.5 results, with an average error for two
typical structural types of less than 3%. The DFT-D values
are systematically (with the exception of structure H)
underestimated (by about 13% for the B97 functional,
more with TPSS). The SCS-MP2 values are overestimated
(by about 11%) for all stacked structures whereas they
are underestimated for both T-shaped structures.

Graphene · · ·Nucleic Acid Bases and Base Pairs. PM6-
DH stabilization energies of various sheet models of

Table 5. Stabilization Energies (in kcal/mol) of Stacked (S), Parallel-Stacked (PS), and T-Shaped (T) Structures of the
Porphine Dimer Determined by the PM6-DH, DFT-D/TPSS/TZVP, DFT-D/B97/TZV(2df,2pd), SCS-MP2/ TZV(2df,2pd), and
MP2.5/CBSa Techniques

structure DFT-D/TPSS/TZVP DFT-D/B97/TZV SCS-MP2 PM6 PM6-DH MP2.5

A(S) 10.6 13.5 17.7 -0.8 16.9
B(S) 11.2 14.5 19.0 0.4 18.0 17.6
C(S) 16.0 18.3 24.6 0.2 21.1
D(PS) 16.6 20.0 25.6 0.2 22.0
E(PS) 16.9 20.5 25.8 1.5 23.3 23.0
F(PS) 17.1 20.6 26.0 0.9 23.2
G(T) 7.2 8.4 7.3 3.2 8.9
H(T) 7.3 9.7 9.1 2.3 9.4

a E(2) correction from CBS and scaled E(3) correction from TZV.

Table 6. Stabilization Energies (in kcal/mol) of Various
Graphene Models with Nucleic Acid Bases and Base Pairs
Determined by the PM6-DH, DFT-D/B97/TZV(2d, 2p),
DFT-D/TPSS/TZVP, and SCS-MP2/ TZV(2df,2pd)
Techniques

C A T U C G A · · ·T A · · ·U G · · ·C

24 PM6-DH 14.8 15.4 13.6 13.7 18.2 19.7 18.9 20.4
PM6 2.3 3.9 3.9 3.0 5.3 1.9 1.9 2.4
DFT-D/TPSS/TZVP 12.1 12.7 11.4 11.6 16.2 15.3 14.7 15.8
DFT-D/B97/TZV 14.2 15.4 13.2 13.7 18.3 17.7 17.0 18.3
SCS-MP2 15.1 14.9 13.0 13.4 18.0

54 PM6-DH 19.0 17.8 15.5 16.9 21.5 29.3 28.2 31.2
PM6 2.9 3.2 3.2 3.4 4.2 2.9 3.0 3.9
DFT-D/TPSS/TZVP 15.9 14.8 13.4 15.4 19.8 24.4 23.6 27.4
DFT-D/B97/TZV 19.3 18.0 15.4 17.8 23.3 29.9 28.5 32.0
SCS-MP2 20.8 18.4 16.1 18.2 24.1

96 PM6-DH 19.7 18.0 15.6 17.5 22.4 35.2 33.1 36.5
PM6 2.9 2.6 2.5 3.4 4.4 4.4 4.5 5.5
DFT-D/TPSS/TZVP 16.6 15.5 14.0 16.1 20.7 29.8 28.1 32.1
DFT-D/B97/TZV 20.2 19.0 16.3 18.5 24.2 36.5 34.0 37.9

150 PM6-DH 19.8 18.1 15.8 17.7 22.9 36.7 34.4 37.7
PM6 2.8 2.4 2.4 3.3 4.2 4.9 4.9 6.0
DFT-D/TPSS/TZVP 16.7 15.8 14.3 16.4 21.1 30.5 28.8 33.0
DFT-D/B97/TZV 20.3 19.3 16.5 18.8 24.9 - 34.9 38.7
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graphene (having 24, 54, 96, and 150 carbon atoms) with
nucleic acid bases as well with H-bonded base pairs were
compared with the reference data obtained by the DFT-D/
B97/TZV(2d,2p) and SCS-MP2/TZV(2df,2pd) techniques.42

Our own calculation at the DFT-D/TPSS-TZVP level is
included for consistency with the other results presented here.
Table 6 shows that PM6-DH results for complexes of
graphene with isolated bases agree very well with reference
energies for both relative and absolute stabilization energies.
A similar conclusion can be made about complexes of
graphene with DNA base pairs.

DNA · · ·DAPI. Stabilization energies for the DNA dimer
with 4′,6-diamidino-2-phenylindole (DAPI) bound as an
intercalator and for the DNA trimer with DAPI bound to
the minor groove determined with the PM6-DH method are
58.6 and 88.5 kcal/mol, respectively. Reference stabilization
energies obtained using DFT-D/TPSS/TZVP are smaller than
the PM6-DH results (40.4 and 67.8 kcal/mol, respectively).
Considering, however, the results of the previous applications
(i.e., porphine dimers and complexes of graphene with
nucleic acid bases), the DFT-D results represent a lower limit
of the real (unknown) stabilization energy. The present PM6-
DH results can be thus considered as a satisfactory estimate
of the respective stabilization energies.

Optimization of the DNA Tetramer. The DNA tetramer
was optimized with the PM6 and PM6-DH methods, and
the resulting geometries were compared to the DFT-D/TPSS/
SVP ones. To demonstrate the flexibility of the method,
optimizations were performed in the gas phase as well as in
an environment represented by the COSMO implicit solvent
model. The structure of the DNA tetramer collapsed during
optimization using the PM6 method, and the rmsd for the
resulting structure was 2.4 Å (compared to the DFT-D/TPSS/
SVP geometry). The D and H corrections to the PM6 method
improved its performance. The DNA tetramer retained its
characteristic features during optimization with the PM6-
DH method, and the rmsd decreased to 1.6 Å. Consideration
of an implicit water model in PM6-DH (and also in the
reference DFT-D calculations) further decreased the rmsd
to an acceptable value of 1.3 Å.

Conclusions

Herein, we present a novel approach to improve semiem-
pirical methods toward a more accurate description of
noncovalent interactions acting in molecular clusters as well
as in complex molecular systems. London dispersion and
hydrogen bonds are treated separately by empirical correc-
tions added to the QM calculation.

(1) Our method (PM6-DH) is based on the recent semiem-
pirical method PM6, which currently represents the state of
the art in the development of semiempirical QM methods.
The same approach can be used with other QM and
semiempirical methods.

(2) We adopted the formalism of a dispersion correction
used previously in DFT and reparameterized it for PM6. It
systematically improves all dispersion-bonded complexes,
yielding an accuracy close to that of high-level correlated
QM methods.

(3) The correction of hydrogen bonds has the form of
an additional electrostatic term applied to all possible
hydrogen bonds in the system. Differences in the nature
and magnitude of the error found in PM6 calculations
required the introduction of atom types to differentiate
several types of hydrogen bonds. The correction is
directional and should thus provide a better description
of the hydrogen bonds than the standard core-core
interaction used in semiempirical methods.

(4) The resulting PM6-DH method was tested on
multiple sets of high-quality benchmark data. The results
are superior to those obtained with the PM6 method alone.
It has to be stressed that the accuracy of the method is
close to that of correlated ab initio methods. The long-
sought target accuracy for semiempirical QM methods,
so-called chemical accuracy (error < 1 kcal/mol), was
achieved for the S22 set. On the larger set of biomolecular
complexes, the JSCH2005 database, it was shown that the
description of different types of interactions is consistent
and brings a significant improvement when compared to
the uncorrected PM6 method.

(5) Although the method was derived for interaction
energies in molecular complexes, the corrections are impor-
tant also in isolated molecules featuring intramolecular
noncovalent interactions. Excellent results were achieved in
the description of conformational energies of small peptides,
with a mean absolute error [compared to CCSD(T)/CBS
results] amounting to 0.9 kcal/mol for a set of 76 structures.
This accuracy is comparable to that of MP2/cc-pVTZ
calculations.

(6) Implementation of a gradient makes this method useful
for the optimization of systems with geometries determined
by noncovalent interactions. The analytical calculation of
gradients of the H-bond correction is not exact but uses an
approximation. Nevertheless, the method performed well in
geometry optimization tests, yielding geometries close to
those obtained using the best QM methods available. There
is a minor problem in the geometries of the strongest H-bonds
associated with the form of the correction term, but it is
outweighed by the other benefits. Optimization of the
structure by PM6-DH leads to improvements in the relative
energies of peptide conformers. This is, to the best of our
knowledge, a unique feature because geometry optimization
with other semiempirical QM methods usually strongly
deteriorates the quality of the geometries obtained. Because
hydrogen-bond types are determined only once (at the
beginning of the calculation), the H-bond correction cannot
be used for a continuous description of a reaction that
changes valence states of the atoms involved in hydrogen
bonds.

(7) The PM6-DH technique was further tested for various
extended stacked complexes (porphine dimer, graphene
models with DNA bases, and base pairs). It was shown that
the method provides excellent stabilization energies that agree
very closely with the benchmark values obtained by much
more expensive DFT-D, SCS-MP2, or even MP2.5 methods.
Finally, for the example of a DNA tetramer, we showed that
PM6-DH can be used for geometry optimizations of rather
large biomolecules.
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(8) The PM6-DH calculations are very efficient and can
be routinely applied to systems of up to 1000 atoms. Using
the linear scaling MOZYME algorithm available in the PM6
implementation in MOPAC2009, nonaromatic systems with
several thousand atoms can be calculated. With this perfor-
mance, the method alone can replace molecular mechanics
in calculations of smaller systems. In contrast to molecular
mechanics, the present PM6-DH method fully and properly
includes quantum effects. This fact and the efficiency of the
method make its application in biological disciplines (con-
cerning static or dynamic descriptions) extremely attractive
for use in MD simulations.
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(3) Černý, J.; Hobza, P. Phys. Chem. Chem. Phys. 2007, 9 (39),
5291–5303.

(4) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 4899–
4907.

(5) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 4907–
4917.

(6) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.
J. Am. Chem. Soc. 1985, 107 (13), 3902–3909.

(7) Stewart, J. J. P. J. Comput. Chem. 1989, 10 (2), 221–264.

(8) Stewart, J. J. P. J. Comput. Chem. 1989, 10 (2), 209–220.

(9) Giese, T. J.; Sherer, E. C.; Cramer, C. J.; York, D. M. J. Chem.
Theory Comput. 2005, 1 (6), 1275–1285.

(10) Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk,
M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys. ReV. B 1998,
58 (11), 7260–7268.

(11) Yang, Y.; Yu, H. B.; York, D.; Cui, Q.; Elstner, M. J. Phys.
Chem. A 2007, 111 (42), 10861–10873.

(12) Winget, P.; Selcuki, C.; Horn, A. H. C.; Martin, B.; Clark, T.
Theor. Chem. Acc. 2003, 110 (4), 254–266.

(13) Elstner, M.; Hobza, P.; Frauenheim, T.; Suhai, S.; Kaxiras,
E. J. Chem. Phys. 2001, 114 (12), 5149–5155.

(14) Martin, B.; Clark, T. Int. J. Quantum Chem. 2006, 106 (5),
1208–1216.

(15) Morgado, C. A.; McNamara, J. P.; Hillier, I. H.; Burton, N. A.
J. Chem. Theory Comput. 2007, 3 (5), 1656–1664.

(16) Tuttle, T.; Thiel, W. Phys. Chem. Chem. Phys. 2008, 10 (16),
2159–2166.

(17) Stewart, J. J. P. J. Mol. Model. 2007, 13 (12), 1173–1213.

(18) Voityuk, A. A.; Rosch, N. J. Phys. Chem. A 2000, 104, 4089–
4094.

(19) Thiel, W.; Voityuk, A. A. Theor. Chim. Acta 1992, 81 (6),
391–404.

(20) Thiel, W.; Voityuk, A. A. Theor. Chim. Acta 1996, 93 (5),
315.

(21) Thiel, W.; Voityuk, A. A. J. Phys. Chem. 1996, 100 (2), 616–
626.

(22) Stewart, J. J. P. J. Mol. Model. 2008, 14 (6), 499–535.

(23) Stewart, J. J. P. MOPAC2007; Stewart Computational
Chemistry: Colorado Springs, CO, 2007; available at http://
OpenMOPAC.net(accessed Nov 10, 2008).

(24) VAMP. In Materials Studio 4.4; Accelrys: San Diego, CA,
2008; available at http://accelrys.com/products/materials-
studio/modules/VAMP.html(accessed Apr 22, 2009).

(25) Jug, K.; Geudtner, G. J. Comput. Chem. 1993, 14 (6), 639–
646.
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Abstract: We have performed large-scale calculations for the interaction energy of the stacked
methyl adenine-methyl thymine complex at the CCSD(T)/aug-ccpVXZ (X ) D,T) levels. The
results can serve as benchmarks for the evaluation of two methods, MP2.5, introduced recently,
and the widely used ∆CCSD(T) correction defined as the difference between the CCSD(T) and
MP2 energies. Our results confirm that the ∆CCSD(T) correction converges much faster toward
the complete basis set (CBS) limit than toward the MP2 or CCSD(T) energies. This justifies
approximating the CBS energy by adding the ∆CCSD(T) correction calculated with a modest
basis set to a large basis MP2 energy. The fast convergence of the ∆CCSD(T) correction is not
obvious, as the individual CCSD and (T) contributions converge less rapidly than their sum.
The MP2.5 method performs very well for this system, with results very close to CCSD(T). It is
conjectured that using a ∆MP2.5 correction, defined analogously to ∆CCSD(T), with large basis
sets may yield more reliable nonbonded interaction energies than using ∆CCSD(T) with a smaller
basis set. This would result in important computational savings as the MP3 scales computationally
much less steep than CCSD(T), although higher than SCS-MP2, a similar approximation.

1. Theoretical Background

The CCSD(T) method in the complete basis set (CBS) limit
provides accurate stabilization energies for various structures
of molecular complexes. This is a very demanding task, but
it must be kept in mind that CCSD(T)/CBS is in fact the
only ab initio quantum mechanical method which is consis-
tently capable of delivering benchmark quality results for
single-reference systems. Other methods either are too

expensive or, if less expensive, fail to provide the right
answer (e.g., MP2/CBS strongly overestimates stacking
stabilization energies although it describes H-bonding ener-
gies reasonably well1). The performance of yet another group
of less expensive methods is enhanced by incorporating
empirical parameters. For example, the SCS-MP2 method2

and its variants (SOS-MP2,3 SCS(MI)-MP2,4 and modified
SCS-MP25) provide better results than the MP2 method (the
overestimation of the stacking interactions is corrected) but
utilize one or two empirical parameters.

CCSD(T)/CBS provides excellent results, but it is very
time consuming due to its unfavorable N7 scaling with the
size of the system. Recently, a much more economical but
still accurate method, MP2.5 (along with a generalized
variant, “scaled MP3”), was proposed.1 Unlike the SCS-MP2
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method and its variants, MP2.5 has correct asymptotic scaling
at large intermolecular distances and uses only a single
parameter. The MP2.5 method, more expensive than MP2,
computational scaling is (O(N6) vs O(N5)) but still can be
applied to significantly larger systems than CCSD(T). MP2.5
was shown to be superior when compared to SCS-MP2 based
methods.1

An alternative, and more economical, approach uses
modified density functional theory (DFT). DFT, extended
by empirical dispersion correction by Grimme6 or Jurečka
et al.,7 provides good stabilization energies and geometries
for molecular complexes and clusters, but two parameters
per atom are included in the empirical dispersion energy
formula (Grimme’s formulation includes an extra global
scaling parameter as well). Promising new exchange-
correlation functionals of Zhao and Truhlar (the M05 and
M06 families8) use a large number of fitted parameters.
Preliminary results obtained in the Hobza laboratory show
good performance of the M06 family. They perform well
for both noncovalent interactions and also for IR and visible
spectra of isolated molecules. Parameters in most of the
procedures mentioned above must, however, be fitted against
benchmark data, resulting mostly from the CBS extrapolation
of CCSD(T) energies.

The estimated CCSD(T)/CBS energy is defined as

where the first term is the MP2 interaction energy, covering
most of the correlation effects. This term is ideally calculated
at a level close to that of the basis set limit. The second
term, called the CCSD(T) correction term, is determined as
a difference between CCSD(T) and MP2 interaction energies
calculated using a smaller, computationally tractable basis
set:

It describes correlation effects such as pair couplings that
are omitted in the MP2 method.

Fairly reliable interaction energies close to CBS can be
obtained by two- (or more) point extrapolation by schemes
proposed, for instance, by Helgaker et al:9

where A, B, and R are fitting parameters, or by Lee et al.10,11

(using BSSE corrected, ∆EX
b, and uncorrected, ∆EX

n, interac-
tion energies):

based on systematically improved Dunning’s aug-cc-pVXZ
basis sets (e.g., aug-cc-pVDZ and aug-cc-pVTZ or, prefer-

ably, aug-cc-pVTZ and aug-cc-pVQZ). The Min et al.
extrapolation can utilize two or more arbitrary basis sets.11

These methods were developed in Kim’s laboratory, and they
will be referenced as Kim’s extrapolation methods from now
on.

The determination of the ∆CCSD(T) correction term,
needed in eq 1, is computationally expensive despite the fact
that it is usually calculated in a small or medium size basis
set. It is known that this term converges faster than MP2
interaction energy itself. About 300 CCSD(T)/CBS stabiliza-
tion energies collected in the S22,12 S26-07,13 JCSH2005,12

and BEGDB14 databases were determined in the above-
mentioned way, using the Helgaker’s extrapolation. One very
important observation follows from these also referred to as
the “benchmark” data. The ∆CCSD(T) correction term is
almost negligible for H-bonded complexes while being
systematically repulsive (up to 3.5 kcal/mol or more) for
stacked complexes. Therefore, MP2/CBS results for stacked
structures are strongly overbinding, with relative errors of
as much as 50%. The question now remains whether the
assumption of fast convergence, which is of key importance
for the accurate evaluation of the CCSD(T)/CBS interaction
energies for extended complexes, is fulfilled not only for
model complexes (see, e.g. ref 12) but also for larger real
life examples. Evidently, the only way to test this assumption
is to carry out a “brute-force” attempt and perform the very
time-consuming CCSD(T) calculations in extended basis sets
for the systems of interest.

The benzene dimer is the most extensively investigated
model of π interaction at high levels of correlation and large
basis sets (up to aug-cc-pVQZ).15-17,19 The total ∆CCSD(T)
term for the stacked dimer exhibits fast and monotonic
convergence. Interestingly, its two components ∆CCSD and
∆(T) converge individually and less rapidly indicating a
cancellation between these terms. Similar calculations on the
uracil dimer19 at the aug-cc-pVTZ level confirm this conclu-
sion. However, the ∆CCSD(T) correction is rather modest
in these systems (below 2 kcal/mol), and it is desirable to
check it for systems where it is larger.

Among all the stacked DNA base pairs included in the
S22 and JCSH2005 data sets, the largest ∆CCSD(T) cor-
rection term, about 3.6 kcal/mol, was for the 9-methyl
adenine (mA)-1-methyl thymine (mT) stacked complex.
This complex is quite large (110 correlated electrons), so
the previous calculations were done with the 6-31G*(0.25)
basis set only.

In this work, we are trying to approach the CCSD(T)/
CBS for the stacked complex of mA-mT by applying the
aug-cc-pVDZ and aug-cc-pVTZ basis sets and extrapolating
the results to the complete basis set limit, using standard
extrapolation techniques. Besides these benchmark calcula-
tions, we also tested the performance of the MP2.5 procedure.

2. Methodology

The geometry of the stacked mA-mT complex (see Figure
1) was taken from the S22 data set where it was determined
by counterpoise-corrected all-coordinates gradient optimiza-
tion at the MP2/cc-pVTZ level. It has been shown previ-
ously20 that these geometries are close to the CCSD(T) ones.

CCSD(T )CBS ≈ MP2CBS + ∆CCSD(T )small basis set (1)

∆CCSD(T )small basis set ) CCSD(T )small basis set -
MP2small basis set (2)

EX
HF ) ECBS

HF + A.exp(-RX) (3)

EX
corr. ) ECBS

corr. + B.X-3 (4)

δX ) ∆EX
b - ∆E X

n (5)

εX ) ∆EX
b + ∆EX

n (6)

∆ECBS ) 1/2(δXεX+1 - δX+1εX)/(δX - δX+1) (7)
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To investigate the performance of other “small” basis
sets which were used for calculation of other extended
(stacked) systems, the CCSD(T) calculations were per-
formed also with 6-31G*, 6-31G*(0.25), 6-31G**,
6-31G**(0.25), 6-31G**(0.25,0.15), and 6-31G**(diff
aDZ) as well as with 6-31+G*, 6-31+G*(0.25), 6-31+G**,
6-31+G**(0.25), and 6-31+G**(0.25,0.15) (Table 1
provides a complete list; note that all calculations involve
spherical harmonic basis sets). Exponents of the d (for
heavy elements, e.g. C, N, O) and p (hydrogen) polariza-
tion functions, in the 0.25 and (0.25,0.15) basis sets, were
changed from default values to more diffuse ones (0.8f0.25
and 1.1f0.15), following the recommendations of van
Lenthe et al.21 Similarly, in the 6-31G**(diff aDZ) basis
set, these exponents of the polarization functions were
changed to the most diffuse ones from aug-cc-pVDZ (e.g.,
0.8f0.151and 1.1f0.141). All correlated calculations use
the frozen core approximation (the 1s orbital of the C, N,
and O atoms). The interaction energy was, in all cases,
corrected for the basis set superposition error using
Boys-Bernardi22 counterpoise correction.

Calculations involving the largest aug-cc-pVXZ (X ) D,T)
basis sets were performed using the PQS program package23

with a recently developed parallel CCSD(T) module24,25 that
utilizes a parallel I/O filesystem.26 This code was designed
for an efficient computation of CCSD(T) energies for very
large systems. The linear dependency in the basis set was
not removed for this part of the calculations, but a tight
integral threshold was applied (10-14) in order to avoid
numerical difficulties that may be expected in such an
extended system, where the overlap matrix has small
eigenvalues.

All other MP3 and CCSD(T) calculations were carried out
using the MOLCAS package.27,28 This program uses Cholesky
decomposed (CD) two-electron integrals in the Hartree-Fock
module with no local exchange screening.29 The MP3 and
CCSD(T) calculations used a new, highly parallelized closed-
shell code30 and also made use of the CD decomposition of
two-electron integrals. For all calculations, a threshold of
the order of 10-5 was used for the two-electron integrals

decomposition; in our experience, this gives an accuracy of
higher than 0.01 kcal/mol.

3. Results and Conclusions

The total CCSD(T) stabilization energy (absolute value of
the interaction energy) of mA-mT is strongly dependent
on the basis set. As shown in the Table 1, going from aug-
cc-pVDZ (618 basis functions), where the CCSD(T) calcula-
tions are already out of the range of most CCSD(T) codes
on standard computer architectures, to aug-cc-pVTZ (1311
basis functions), the stabilization energy increases by as much
as ∼1.5 kcal/mol.

A rough measure, of whether a basis set is saturated for
calculation of the interaction energy, is a comparison of the
BSSE corrected and uncorrected values. In aug-cc-pVTZ,
these two values at the CCSD(T) level differ by ∼4.4 kcal/
mol. Furthermore, even for such a large basis set as the aug-
cc-pVQZ, the corrected and uncorrected stabilization energies
at the MP2 level still differ by 2 kcal/mol. It is very important
to use diffuse basis functions. For instance, the CCSD(T)
stabilization energy obtained using the cc-pVTZ-f basis set
(the standard Dunning’s cc-pVTZ basis set without f func-
tions) is ∼1.8 kcal/mol lower than at the aug-cc-pVDZ level,
i.e., a basis set of the same size. This is also apparent by
comparing the results obtained, for instance, with the
6-31+G** and 6-31+G**(0.25,0.15) basis sets. They differ
by 3.75 kcal/mol.

Further analysis of results in Tables 1 and 2 clearly
indicates where this basis set dependence comes from. The
HF results (see Table 1) are repulsive and show almost no
basis set dependence, amounting to 7.31 kcal/mol in the least
diffuse basis set (6-31G*) and to 7.05 kcal/mol in the most
diffuse and extended aug-cc-pVQZ basis set. The effect of
the BSSE correction is significant even at this level of theory,
being most pronounced in the smallest but very diffuse
6-31G**(diff aDZ) basis set at ∼10 kcal/mol (in absolute
value), and leads to artificial stabilization of the complex.
Let us skip the MP2 method for a while and focus on the
effect of correlation beyond MP2, i.e., ∆CCSD(T) shown
in Table 2.

The basis set dependence of the ∆CCSD(T) correction
term is significantly smaller than the changes in the total
CCSD(T) stabilization energy. The dependence of the
∆CCSD(T) on the diffuseness of basis set is reversed for
the 6-31G**, 6-31+G*, and 6-31+G** family of basis sets
but increases in going from the aug-cc-pVDZ to the aug-
cc-pVTZ basis. Surprisingly, not even the ordering of the
BSSE corrected and uncorrected values of ∆CCSD(T) is
uniform. This situation is similar to that of the stacked
structure of the uracil dimer.19 The maximum scatter of the
∆CCSD(T) values is much smaller compared to the total
CCSD(T) values ∼1.3 vs ∼8.6 kcal/mol or ∼30 vs 66% of
the total combination. What differs tremendously is the
absolute value of the difference between the BSSE corrected
and uncorrected values. The largest ∆CCSD(T) difference
is ∼0.8 kcal/mol for the 6-31+G**(0.25,0.15) basis set,
while the largest difference for the total CCSD(T) values is
more than 27 kcal/mol. For the highest quality ∆CCSD(T)
and CCSD(T) values (aug-cc-pVTZ), these differences are

Figure 1. Structure of the methyl adenine-methyl thymine
complex.
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∼0.2 vs ∼4.4 kcal/mol. The difference between the ∆CCS-
D(T) calculated in the better performing small basis set,
6-31G**(0.25), and the “reference”, aug-cc-pVTZ, is ∼0.7
kcal/mol, while for the better performing “medium” basis
set, 6-31+G**, it is ∼0.6 kcal/mol. This represents the limit
of accuracy of the “estimated” CCSD(T)/CBS calculated
according to the eq 1 using the small basis set for the
∆CCSD(T) correction. Another option is to stay with the
“plain” CCSD(T) values, which would, however, lead to
much larger errors, ∼2.8 kcal/mol for better performing small
basis set 6-31G**(0.25,0.15) and 1.6 kcal/mol for better
performing “medium” basis 6-31+G**(0.25,0.15).

The largest basis set dependence is obtained for the MP2
correlation energy. Going from the aug-cc-pVTZ to aug-cc-
pVQZ, the stabilization energy still increases by almost 0.5
kcal/mol, while the difference between the BSSE corrected
and uncorrected values decreases from ∼4.6 to ∼1.9 kcal/
mol. For comparison, going from aug-cc-pVDZ to aug-cc-
pVTZ, the ∆CCSD(T) correction term increases only by
∼0.1 kcal/mol and the difference between the BSSE cor-
rected and uncorrected values reduces from ∼-0.5 to ∼0.2
kcal/mol. Considering the slow convergence of MP2 and the
rather fast one of ∆CCSD(T), the composite scheme eq 1
should be, in general, successful.

Table 2 includes the ∆CCSD corrections. Comparing them
with the ∆CCSD(T) values, it is clear that there is significant
cancellation between the ∆CCSD and ∆(T) contributions.

Table 2 also shows the MP3 correction term, ∆MP3.
Comparing with ∆CCSD(T), ∆MP3 is too repulsive by
42-59%, see the “copt ” column in the table. Scaling the
∆MP3 correction by 1/2, i.e., doing MP2.5, results are in
absolute errors of ∼0.7-∼0.05 kcal/mol relative to the
∆CCSD(T) value, depending on the basis set. The error of
MP2.5 is indicated by the difference between the optimum
scaling coefficient and 0.5 for the particular structure and
basis set. Some trends of “copt”, at least for the nucleic acid
base pairs, have already been discussed previously.1 The
optimum scaling coefficient is closer to 0.4 for small and
diffuse basis sets and closer to (or larger than) 0.5 for less
diffuse basis sets. Interestingly, the basis set dependence of
the higher-order correlation terms, e.g., ∆MP3 and ∆CCS-
D(T), for mA-mT is strong enough to make the MP2.5
method in larger basis sets (aug-cc-pVDZ or aug-cc-pVTZ)
more accurate than the estimated CCSD(T)/CBS value,
calculated using the exact ∆CCSD(T) correction obtained
by small/medium basis sets (e.g., 6-31G*/6-31G**- or
6-31+G*/6-31G+G**-type). The error of MP2.5 is deter-
mined by the absolute value of the ∆MP3 term. According
to our experience from the S22 test set,1 which is quite

Table 1. Basis Set Dependence of HF, MP2, and CCSD(T) Total Stabilization Energies for the mA-mT Complexa,b

basis set no. of AOs HF MP2 CCSD(T)

6-31G*c 324 -7.31 (-2.59) 7.65 (17.49) 4.24 (14.15)
6-31G*(0.25) 324 -6.99 (0.66) 12.89 (30.21) 9.32 (26.85)
6-31G** 369 -7.20 (-2.45) 8.10 (17.89) 4.60 (14.41)
6-31G**(0.25) 369 -6.91 (0.69) 13.07 (30.12) 9.48 (26.67)
6-31G**(0.25,0.15) 369 -6.98 (1.69) 13.63 (34.00) 10.28 (30.88)
6-31G**(diff aDZ) 369 -7.22 (2.86) 13.23 (40.56) 10.23 (37.92)
6-31+G* 408 -7.10 (-4.73) 10.61 (21.42) 7.05 (18.48)
6-31+G*(0.25) 408 -6.59 (-1.99) 14.80 (31.35) 11.46 (28.67)
6-31+G** 453 -7.17 (-4.73) 11.09 (22.06) 7.41 (19.05)
6-31+G**(0.25) 453 -6.72 (-2.35) 14.06 (30.15) 10.63 (27.31)
6-31+G**(0.25,0.15) 453 -6.77 (-0.98) 14.36 (34.75) 11.16 (32.33)
cc-pVTZ-f 618 -7.14 (-5.02) 14.20 (21.19) 9.82 (17.04)
aug-cc-pVDZ 618 -7.11 (-4.43) 15.77 (27.00) 11.61 (23.31)
aug-cc-pVTZ 1311 -7.03 (-6.43) 17.31 (21.92) 13.06 (17.44)
aug-cc-pVQZ 2370 -7.05 (-6.89) 17.79 (19.70) -

a Total stabilization energies in kcal/mol; negative values are repulsive. b Values in parentheses are stabilization energies without BSSE
correction. c Spherical harmonics (5d, 7f,...) are used in all basis sets.

Table 2. Basis Set Dependence of ∆MP3 (∆MP2.5) and ∆CCSD(T) Correction to the Interaction Energy (in kcal/mol)a

basis set ∆MP3 ∆CCSD ∆CCSD(T) copt
b ∆MP2.5 errorc

6-31G* 5.93 (6.77) 5.33 (6.10) 3.41 (3.34) 0.58 0.45
6-31G*(0.25) 7.60 (8.45) 6.30 (7.02) 3.57 (3.36) 0.47 -0.23
6-31G** 6.11 (6.98) 5.49 (6.31) 3.50 (3.48) 0.57 0.44
6-31G**(0.25) 7.67 (8.58) 6.38 (7.17) 3.59 (3.45) 0.47 -0.25
6-31G**(0.25,0.15) 7.67 (8.48) 6.29 (7.10) 3.36 (3.13) 0.44 -0.48
6-31G**(diff aDZ) 7.12 (7.92) 5.90 (6.97) 2.99 (2.64) 0.42 -0.57
6-31+G* 6.95 (7.41) 6.01 (6.71) 3.56 (2.94) 0.51 0.09
6-31+G*(0.25) 7.79 (7.82) 6.34 (6.66) 3.33 (2.68) 0.43 -0.56
6-31+G** 7.15 (7.63) 6.20 (6.94) 3.68 (3.01) 0.52 0.10
6-31+G**(0.25) 7.87 (7.98) 6.44 (6.83) 3.43 (2.84) 0.44 -0.50
6-31+G**(0.25,0.15) 7.81 (7.80) 6.33 (6.71) 3.20 (2.42) 0.41 -0.71
cc-pVTZ-f 8.67 (9.01) 7.34 (7.78) 4.38 (4.15) 0.50 0.05
aug-cc-pVDZ 8.94 (9.43) 7.48 (8.20) 4.16 (3.69) 0.47 -0.31
aug-cc-pVTZ 9.08 (9.46) 7.93 (8.45) 4.25 (4.47) 0.47 -0.29

a Values in parentheses are contributions without correction for the BSSE. b copt ) ∆CCSD(T)/∆MP3. c ∆MP2.5 error ) ∆CCSD(T) -
0.5*∆MP3.
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diverse in terms of intermolecular interaction types, the
optimum value of the scaling coefficient lies between 0.4
and 0.6. This means that the absolute error of the ∆MP2.5
correction is generally within 10% of the ∆MP3 value. This
error is comparable with or lower than the basis set effect
on ∆CCSD(T).

Timings shown in Table 3 illustrate computational savings
of the MP3 method.

MP3 is significantly faster that CCSD despite the same
asymptotic scaling of these methods with the system size.
The computer time is saved by skipping numerous nonlinear
terms from the CCSD equations. However, the major
difference is that the CCSD method is iterative, while MP3
is equivalent to a single configuration interaction doubles
(CID) iteration. This is especially beneficial in parallel runs.
The savings of MP2.5 with respect to CCSD(T) result mainly
from its lower asymptotic scaling, O(N6) vs O(N7). This
makes MP2.5, atlhough it lacks a solid theoretical basis, an
efficient alternative for CCSD(T) when the latter exceeds
available computational resources. Another problem not yet
fully recognized by the computational chemistry community
is that the numerical accuracy of the (T) combination
obtained using double precision arithmetic may be insuf-
ficient due to the very large number arithmetic operations
in its evaluation. This is particularly the case if diffuse basis
sets are utilized.

For the sake of completeness, we also report a few details
involving our calculation for the biggest basis sets. The
computation for the dimer in the aug-cc-pVTZ basis set was
performed employing a 40 Xeon E5430 with 2.66 GHz
nodes, each node with 8 processing cores and 16 GB of
memory. The wall clock time for the most expensive part,
the (T) correction, was 160 h. Calculation of energies of the
monomers in the basis set of the dimer needed for counter-
poise correction took less than 120 h on 10 nodes. The basis
set dimension for this system is 1311, and the number of
correlated occupied orbitals is 55.

To obtain new CCSD(T) benchmark values for the
stabilization energy of mA-mT, we performed Helgaker and
Kim’s type of extrapolations, shown in Table 4.

For both types of extrapolations, two variants are pre-
sented. First, rows “aDZfaTZ” in Table 4 correspond to
extrapolations of the total CCSD(T) correlation energies

obtained by the aug-cc-pVDZ and aug-cc-pVTZ basis set.
In Helgaker’s extrapolation, the HF energy was taken from
the aug-cc-pVQZ basis set, which was considered converged
to the CBS limit. The values in the second row, labeled as
“aTZfaQZ′”, were constructed by combining the MP2
correlation (or in case of Kim’s extrapolation total) energies
with the ∆CCSD(T) obtained in the basis set of one
cardinality lower, i.e., MP2/aug-cc-pVQZ + ∆CCSD(T)/aug-
cc-pVTZ, and analogously for the aug-cc-pVTZ and aug-
cc-pVDZ pair.

Assuming that the “aTZfaQZ’” extrapolation for both
types is closer to the real CBS limit, the total CCSD(T)
stabilization energies from the Helgaker and Kim schemes
differ by less than 0.05 kcal/mol, both being ∼13.7 kcal/
mol, while the ∆CCSD(T) of the both correlation schemes
agree within ∼0.1 kcal/mol, both being ∼4.30 kcal/mol.

4. Summary

(1) The ∆CCSD(T) correction term determined from calcula-
tions using extended basis sets (aug-cc-pVDZ and aug-cc-
pVTZ) is 4.3 kcal/mol, which is ∼0.7 kcal/mol more than
that determined using small basis sets (e.g., 3.6 kcal/mol in
6-31G*(0.25)). This means that the CCSD(T)/CBS values
in the S22, S26-07, and JCSH2005 data sets (where the
CCSD(T) correction term is determined using small or
medium basis sets) are reasonably reliable. However, it
indicates that the CBS value of ∆CCSD(T) increases by
10-20% (at most), if evaluated using large basis sets.

(2) The ∆CCSD(T) correction converges more rapidly than
the ∆CCSD and ∆(T) corrections separately, showing a
partial cancellation between these terms.

(3) Helgaker- and Kim-types of extrapolations from
extended basis sets (aug-cc-pVXZ, X ) D, T, Q) are in good
mutual agreement (within 0.1 kcal/mol), which supports the
universality and robustness of both schemes.

(4) The MP2.5 method provides excellent values for
stabilization energies at a much lower cost and, unlike the
SCS-MP2 method2 and its variants, yields the correct
asymptotic behavior for dispersion. Its computational cost,
although higher than MP2 based methods, is reasonable, and
it is recommended for extended molecular complexes. Based
on calculations of other systems, the MP2.5 methods
accuracy is expected to be within 10% of the ∆MP3
correction.

Table 3. Comparison of the MP3, CCSD, and (T) Wall
Clock Timingsa

basis set setup PP/CPP MP3b CCSDb (T)b

6-31G**(0.25,0.15) 6 x A, 4 x B 14/4 0.19 5.93 -
6-31G**(0.25,0.15) 12 x C 24/4 0.05 1.23 5.23
6-31+G**(0.25,0.15) 12 x C 24/4 0.10 2.47 15.75
cc-pVTZ-f 1 x B 1/8 3.78 - -
cc-pVTZ-f 7 x B 7/8 - 31.50 488.00

a The following symbols were used for node architectures: “A”
Intel Core2 Quad (4 cores), 2.40 GHz, “B” Intel Xeon E5345 (8
cores), 2.33 GHz, and “C” 2x Quad-Core AMD Opteron 2354, 2.20
GHz. The column setup explains how the machines were utilized.
“PP” stands for a number of MPI parallel processes, while “CPP”
stands for a number of cores utilized by threaded-BLAS routines
per one MPI process. In all the CCSD calculations listed below, 21
iterations were necessary for the convergence. b Results are in
hours.

Table 4. Helgaker’s and Kim’s Extrapolation of the Total
MP2 and CCSD(T) Stabilization Energies and ∆CCSD(T)
Correction Term (Repulsive) Calculated from Given
Valuese

extrapolation MP2 CCSD(T) ∆CCSD(T)

Helgaker aDZfaTZa 17.95 13.66 4.29
Helgaker aTZfaQZ′b 17.99 13.70 4.29
Kim aDZfaTZc 18.38 13.92 4.45
Kim aTZfaQZ′d 18.14 13.74 4.40

a HF/aQZ + corr. CCSD(T)/(aDZfaTZ). b HF/aQZ + corr.
(MP2/X + ∆CCSD(T)/X - 1)(aTZfaQZ). c Total CCSD(T)/(DfT).
d (Total MP2/X + ∆CCSD(T)/X - 1)/(aTZfaQZ). e Extrapolation
values calculated from the values outlined in footnotes b-e. For
details see text; aXZ stands for Dunning’s aug-cc-pVXZ (X ) D, T,
Q) basis sets.
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Abstract: The aromaticity and the degree of π-electronic delocalization have been theoretically
investigated for R,R′-linked oligothiophenes containing three and five rings and for their fused
analogs oligothienoacenes. By computing magnetic susceptibilities and 1H NMR shieldings as
well as current density maps, it is found that the fused oligomers are more aromatic than the
corresponding nonfused partners. The increase of aromaticity with the size of the oligomerseven
in the case of quinoidal formssis also proven. The π-currents induced by an external magnetic
field show that oligothienoacenes behave as single cycles since they present an intense
diamagnetic current flowing around the whole molecular perimeter. In contrast, nonfused
R-oligothiophenes exhibit diamagnetic currents localized over each thiophene ring. For the
quinoidal oligomers, local diamagnetic π vortices appear around CC double bonds, indicating
that the π electrons are rather localized as in conjugated, nonaromatic polyenes. For quinoidal
nonathienoacene, it is however found that the electronic circulation around the ethylenic bonds
tends to delocalize all over the carbon skeleton, indicating a more effective π-conjugation and
some aromatic character.

1. Introduction

Since Faraday’s discovery of benzene almost 200 years ago,
the features associated with aromaticity have fascinated
chemists.1 Even at present, when thousands of aromatic
compounds are known, research on aromaticity and aromatic
compounds is still in progress. In particular, one of the areas
in which aromaticity plays an essential role is the field of
electroactive organic materials for molecular electronics as,
for instance, small-molecule semiconductors and conducting
polymers.2,3 The achievement of the electric and/or optical
response always involves structural changes in the molecules
constituting the material that imply a gain or a loss in
aromaticity. Organic electroactive materials are obtained by
chemical or electrochemical synthesis, and their properties
can be easily tuned by adding functional groups to their
π-conjugated structure.4-8 It is also important to recall their

exceptional stability under different environments. Therefore,
it is not surprising that there exists an enormous effort in
developing technological applications of these materials such
as organic light-emitting diodes (OLEDs), organic field-effect
transistors (OFETs), flexible and large area displays, bio-
sensors, lightweight photovoltaic cells, or wearable electronic
devices.9-14

A vast majority of organic semiconductors and conducting
polymers are built from aromatic systems such as benzene
or thiophene and their fused derivatives used as monomer
units. In these systems, the extended conjugation of the π
electrons along the molecular skeleton determines the
structural and electronic properties and accounts for their
electric and optical behavior. Conducting polymers present
two nondegenerate forms in their ground state, the aromatic
and the quinoidal forms.15-17 Despite the fact that both forms
are conjugated, the aromatic structure is usually preferred
in the neutral state, and the quinoidal structure is only attained
upon charge injection. Electronic delocalization along the π
system is not enough to allow the material to become
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conductor, and dopingsoxidation/reduction of the materialsis
required to achieve the conducting state. Charge injection
provokes the progressive quinoidization of the conjugated
organic chain. The characteristics of the aromatic form
strongly influence the possibilities of the material as conduc-
tor not only because they determine the easiness for oxidation
or reduction but also because the electronic structure of the
aromatic form is partly inherited by the quinoidal structure.16

In this sense, studying the aromaticity of conjugated oligo-
mers is a relevant task because from this knowledge it is
possible to provide useful information for the development
of advanced semiconducting materials and at the same time
to improve our understanding of aromaticity itself.

Among the different organic semiconducting materials,
R-oligothiophenes (thiophene oligomers joined in R,R’
positions by single bonds) represent a foremost group of
molecules and have been widely employed as the active
layers in organic electronic devices.6,7,11,12,18,19 R-Oligoth-
iophenes show a good environmental stability and are easy
to synthesize, and their electronic and solid-state properties
can be modulated by introducing either donor or electron-
withdrawing groups in their carbon skeleton.19 A main
disadvantage of R-oligothiophenes is that they can deviate
from planarity through torsion about the single inter-ring
bonds thus decreasing the electron delocalization along the
π-conjugated carbon backbone. In this context, oligoth-
ienoacenes (linearly fused thiophenes) are emerging as a
promising new class of π-conjugated compounds that
combine the rigid planarity and extended conjugation of
acenes with the chemical stability of oligothiophenes.20

Oligothienoacenes have been already implemented as the
active layers in OFETs exhibiting an excellent field-effect
performance with mobilities as high as 0.42 cm2 V-1 s-1.21

The structural and optical properties of penta- and hep-
tathienoacene have been recently analyzed in comparison to
those observed in R-oligothiophenes of identical conjugation
length.22

In this work, we perform a comparative study of the
aromaticity of R-oligothiophenes with three (terthiophene,
3T) and five (pentathiophene, 5T) rings and of their
oligothienoacene analogs of identical conjugation length
(pentathienoacene, 5TA, and nonathienoacene, 9TA, respec-
tively) in both aromatic and quinoidal forms (see Scheme
1). Our goal is to determine how the aromatic properties
change with the following: i) the nonfused/fused character
of the conjugated skeleton, ii) the number of monomeric
units, and iii) the aromatic/quinoid nature of the carbon
backbone. Quinoidal forms are built up by introducing end-
capping methylene groups and will be denoted as Q3T, Q5T,
Q5TA, and Q9TA, respectively. It should be stressed that
the main structural difference between R-oligothiophenes and
oligothienoacenes is the sulfur atoms that bridge the thiophene
rings. For the sake of simplicity, we will refer the studied
systems as trimers (3T and 5TA) or pentamers (5T and
9TA).

2. Computational Details

According to the ring-current model (RCM), the exposition
of an aromatic cyclic system to an external magnetic field

Scheme 1. Chemical Structures of the Oligomers Studied
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normal to the molecular plane induces π-electronic ring
currents that produce an increase of the modulus of the
magnetic susceptibility (�) mainly due to an enlargement of
its perpendicular component (�zz).

1,23-28 At the same time,
the π-currents diminish the perpendicular component of the
nuclear magnetic shielding of the proton (σzz),

1,26 which is
normally known as downfield 1H NMR chemical shift. It is
important to emphasize that π-ring currents only modify the
perpendicular component of the susceptibility and shielding
tensors. Indeed, different causes contribute to determine the
in-plane components, but none of them is related to the
special mobility of the π-electrons and, therefore, to aroma-
ticity. Consequently, criteria for diatropicity and aromaticity
can only be based on the out-of-plane component of the
magnetic tensors and not on the average (one-third of the
trace) values. For planar molecules, the symmetry separation
of σ and π orbitals is preserved, and, therefore, it is possible
to evaluate only the contribution to those properties from
π-electrons.

We have carried out a systematic analysis of the aroma-
ticity of the studied compounds and, with this aim, deter-
mined their susceptibilities and NMR shieldings as well as
the density maps of the current induced by the magnetic field.
We have used the damped variant of a method allowing for
continuous transformation of the origin of the current density-
diamagnetic zero, CTOCD-DZ2,29 inside the Coupled
Hartree-Fock approach as implemented in the SYSMO suite
of programs.30 The selected basis sets were cc-pCVTZ for
carbon31,32 and sulfur33 and cc-pVTZ for hydrogen.31

Molecular geometries were optimized within the density
functional theory (DFT) using the B3LYP functional34 and
the 6-31G** basis set35 and imposing C2h symmetry con-
straints. The Gaussian03 program36 was used to this end.
To test the influence of the molecular geometry on the
magnetic properties, the geometry of pentathienoacene was
also optimized using second-order Møller-Pleset (MP2)
perturbation theory. Compared with the B3LYP/6-31G**-
optimized geometry, MP2/6-31G** calculations predict
slightlyshortersingleC-C(0.006-0.007Å),C-S(0.013-0.017
Å), and C-H (0.003 Å) bonds and slightly longer double
CdC bonds (0.008-0.009 Å). The variations on the mag-
netic properties due to these small geometrical changes
are calculated to be rather unimportant since the average
chemical shieldings vary in 0.07-0.10 ppm and their zz-
component in 0.03-0.06 ppm. Changes in magnetic sus-
ceptibility are also small: 0.4% for �Av and 1.2% for �zz.

3. Results and Discussion

3.1. Magnetic Properties. The two trimers, terthiophene
and pentathienoacene, have six carbon-carbon (CC) double
bonds in their aromatic forms 3T and 5TA and seven CC
double bonds in their quinoidal partners Q3T and Q5TA,
but the fused oligomers (5TA and Q5TA) have two
additional sulfur atoms and, therefore, a larger number of π
electrons. A similar situation is found for the pentamers, for
which the aromatic forms 5T and 9TA present one CC
double bond less than the quinoidal structures Q5T and
Q9TAsten vs elevens, while the four extra sulfur atoms
in the fused counterparts provide them with an increased
number of π-electrons.

All the considered aromatic systems are diatropic mol-
ecules, which means that they are able to sustain intense
diamagnetic currents in the presence of an external magnetic
field. The diatropic currents are however sensibly less intense
for the quinoidal systems. The magnetic susceptibilities
calculated for all of them, aromatic and quinoidal, are large
and negative (see Table 1). The component normal to the
molecular plane, �zz, is larger than the average in-plane
components, making the susceptibility anisotropy, ∆�, nega-
tive. The structural and electronic differences mentioned
above are especially reflected by the degree of anisotropy.
∆� shows significantly larger values for the fused oligomers
5TA (-1976.0 au) and 9TA (-3324.4 au) than for their
respective nonfused partners 3T (-1391.2 au) and 5T
(-2186.5 au). Its absolute value increases with the length
of the oligomer (57% in passing from 3T to 5T, 68% from
5TA to 9TA), which is mostly due to the larger contribution
of the π electrons to the �zz component (56 and 72%,
respectively). For the aromatic compounds, the value of �zz

is more than twice (2.2 for 3T and 5T, 2.4 for 5TA and
9TA) the value of 1/2(�xx + �yy), but the ratio between these
values is significantly reduced in passing to the quinoidal
compounds (1.6 for Q3T and Q5T, 1.5 for Q5TA and
Q9TA). To compare with, let us recall that in benzene the
perpendicular component is almost three times larger than
the parallel components.26

Obviously, going from aromatic to quinoidal oligomers
implies a loss of aromaticity, which can be quantified in terms
of the susceptibility anisotropy. There are two important
issues to recall. First, the loss of aromaticity is larger the
smaller is the oligomer. For the trimers it is of 43% (3T)
and 59% (5TA), while for the pentamers is of 40% (5T)
and 56% (9TA), i.e. some 3% lower, showing an increasing

Table 1. Magnetic Susceptibility Tensors in (cgs) ppm aua via the CTOCD-DZ2 Method (Origin in the Center of Mass)b

xx yy zz (π) Av ∆�

terthiophene (3T) -1211.8 -1094.7 -2544.4 (-929.4) -1616.9 -1391.2
pentathienoacene (5TA) -1475.0 -1373.5 -3400.2 (-1576.0) -2082.9 -1976.0
quinoidal terthiophene (Q3T) -1440.8 -1199.5 -2116.3 (-376.7) -1585.5 -796.1
quinoidal pentathienoacene (Q5TA) -1749.8 -1503.4 -2441.8 (-505.5) -1898.3 -815.2
pentathiophene (5T) -2003.4 -1781.3 -4078.8 (-1450.5) -2621.1 -2186.5
nonathienoacene (9TA) -2534.5 -2327.2 -5755.3 (-2708.9) -3539.0 -3324.4
quinoidal pentathiophene (Q5T) -2265.8 -1879.7 -3374.3 (-633.5) -2506.6 -1301.6
quinoidal nonathienoacene(Q9TA) -2857.8 -2488.5 -4131.6 (-987.3) -3157.9 -1458.5

a The conversion factor from cgs au per molecule to cgs emu per mole is a0
3NA ) 8.9238878 × 10-2; further conversion to SI units is

obtained by 1 JT-2 ) 0.1 cgs emu. b Contributions from π electrons to the zz component are given within parentheses. �Av ) (�xx+�yy+�zz)/3.
Anisotropy ∆� ) �zz - 1/2(�xx+�yy).
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aromatic character of the quinoidal form as the size of the
oligomer is enlarged. The same numbers illustrate the second
important fact: the fused oligomers lose a larger fraction of
aromaticity when adopting the quinoidal structure.

The difference in aromaticity between aromatic and
quinoidal structures is better observed by comparing the
proton magnetic shieldings (Table 2). The values calculated
for the 1H NMR shieldings of the 3T, 5TA, 5T, and 9TA
oligomers are typical of aromatic compounds. For these
oligomers, the deshielding attributable to the π-electrons is
in general larger than 2 ppm, while for the quinoidal forms
it is smaller than 1 ppm for the thiophene protons and almost
negligible for the vinylene protons.

Proton magnetic shieldings can also be used to establish
a direct comparison between nonfused and fused oligomers.
For the aromatic trimers, protons H1 of 3T and 5TA (see
Scheme 1 for atom numbering) are in equivalent environ-

ments, and, therefore, the differences in the zz component
of the shielding tensor can be precisely associated with the
differences in the corresponding ring currents. Accordingly,
the values of 21.3 ppm for 3T and 20.3 ppm for 5TA show
that the ring current is more intense in the terminal ring of
the fused oligomer, as the deshielding produced for 5TA
(-2.33 ppm) is larger.

A similar analysis on H1 protons of the aromatic pentamers
5T and 9TA shows that the reduction of the 1H NMR
shielding tensor (σzz ) 21.2 and 20.2 ppm, respectively) is
slightly larger than that of the corresponding trimers. This
suggests that the intensity of the ring current increases with
the size of the oligomer. The trend has been confirmed by
extending the study to include also heptathiophene, though
using the smaller 6-31G** basis set to calculate the shielding
tensor. As shown in Table S1 in the Supporting Information,
the computed numerical values are slightly different from
those reported in Table 2 using the larger Dunning’s basis
sets, but the general features are kept. Calculations predict
that the proton deshielding due to π electrons increases as
the oligomer chain becomes longer. In particular, σzz(π) takes
values of -2.35, -2.36, and -2.44 ppm for the inner proton
of the terminal ring of 3T, 5T, and 7T, respectively.
Furthermore, the deshielding slightly decreases in going from
the central to the external thiophene rings, with the exception
of the terminal rings for which the contribution to deshielding
of the π-electrons is the largest.

For the quinoidal trimers Q3T and Q5TA, it is possible
to compare the vinylene protons H1 close to the sulfur atoms.
Again, the deshielding attributed to the π electrons is larger
for the fused oligomer (-0.28 ppm) than for the nonfused
oligothiophene (-0.26 ppm). The remaining protons of Q3T
and Q5TA present slightly different environments even in
analogous positions, but all of them appear more deshielded
in Q5TA (H3: -0.18 ppm, H5: -0.99 ppm) than in Q3T
(H3: -0.08 ppm, H5: -0.62 ppm). In any case, the values
of π-deshielding found for σzz of the vinylene protons are
intermediate between those found for a nonaromatic quinoi-
dal phenantrene (-0.10 and -0.16 ppm) and those obtained
for a more extended quinoidal system that possesses some
aromatic character (-0.40 and -0.46 ppm).37

As discussed for the aromatic oligomers, the quinoidal
pentamers Q5T and Q9TA also present larger π-deshieldings
than the equivalent trimers, even for the vinylene protons
(see Table 2). It is important to note that this effect turns
out to be more significant in the environment of the central

Table 2. Proton Magnetic Shieldings of Oligothiophenes
and Oligothienoacenes in ppm via the CTOCD-DZ2
Methodb

xx yy zz (π) Av δ1Ha

Terthiophene (3T)
H1 25.6 25.1 21.3 (-1.67) 24.0 7.5
H3 24.8 27.5 21.4 (-1.71) 24.5 7.0
H5 26.8 26.6 19.3 (-2.61) 24.2 7.3
H7 27.0 26.6 19.3 (-2.45) 24.3 7.2

Pentathienoacene (5TA)
H1 26.0 25.0 20.3 (-2.33) 23.8 7.7
H3 25.7 26.9 19.5 (-3.11) 24.0 7.5

Quinoidal Terthiophene (Q3T)
H1 30.7 24.0 23.7 (-0.26) 26.1 5.4
H3 30.1 23.4 24.2 (-0.08) 25.9 5.6
H5 27.3 24.1 22.6 (-0.62) 24.7 6.8
H7 28.7 24.1 21.1 (-0.67) 24.6 6.9
H9 28.8 24.1 20.9 (-0.72) 24.6 6.9

Quinoidal Pentathienoacene (Q5TA)
H1 30.9 24.0 23.7 (-0.28) 26.2 5.3
H3 30.5 23.4 24.0 (-0.18) 26.0 5.5
H5 28.8 24.8 22.0 (-0.99) 25.2 6.3

Pentathiophene (5T)
H1 25.7 25.0 21.2 (-1.69) 24.0 7.5
H3 24.8 27.5 21.3 (-1.72) 24.5 7.0
H5 26.9 26.5 19.2 (-2.62) 24.2 7.3
H7 27.1 26.6 19.2 (-2.48) 24.3 7.2
H9 27.4 26.6 19.1 (-2.41) 24.4 7.1
H11 27.4 26.6 19.1 (-2.65) 24.4 7.1

Nonathienoacene (9TA)
H1 25.6 25.0 20.2 (-2.38) 23.6 7.9
H3 25.8 26.9 19.3 (-3.15) 24.0 7.5

Quinoidal Pentathiophene (Q5T)
H1 30.7 23.9 23.6 (-0.28) 26.1 5.4
H3 30.2 23.4 24.2 (-0.10) 25.9 5.6
H5 27.5 24.1 22.6 (-0.64) 24.7 6.8
H7 28.7 24.1 21.0 (-0.73) 24.6 6.9
H9 28.9 24.2 20.7 (-0.79) 24.6 6.9
H11 29.0 24.0 20.6 (-0.86) 24.5 7.0
H13 29.0 24.1 20.6 (-0.86) 24.6 6.9

Quinoidal Nonathienoacene (Q9TA)
H1 31.0 23.9 23.6 (-0.33) 26.1 5.4
H3 30.5 23.4 23.9 (-0.23) 25.9 5.6
H5 28.8 24.7 21.7 (-1.08) 25.1 6.4

a Chemical shifts are referenced to thiophene values: σAv(H) )
24.50, δ1H ) 6.96. b Contributions from π electrons to the zz
component are given within parentheses. σAν ) (σxx+σyy+σzz)/3.

Table 3. Aromaticity Index HOMA of the Individual
Thiophene Rings for Oligothiophenes and
Oligothienoacenes

index
HOMA

central
ring

2nd

ring
terminal

ring

terthiophene (3T) 0.709 0.724
pentathiophene (5T) 0.715 0.714 0.727
pentathienoacene (5TA) 0.713 0.697 0.727
nonathienoacene (9TA) 0.714 0.714 0.730
quinoidal terthiophene (Q3T) 0.324 0.228
quinoidal pentathiophene (Q5T) 0.496 0.450 0.211
quinoidal pentathienoacene (Q5TA) 0.335 0.305 0.137
quinoidal nonathienoacene (Q9TA) 0.519 0.478 0.207
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ring, for which the changes are larger when the oligomer
becomes longer. This suggests that the central part of the
oligomer becomes more aromatic as the quinoidal chain
lengthens. This partial aromatization is in agreement with
the reduction in the CC bond length alternation (difference
between the length of single and double bonds) calculated
for the central ring in passing from Q3T (0.070 Å) to Q5T
(0.047 Å) and with previous geometrical results obtained for
quinoidal oligothiophenes end-capped with dicyanomethylene
groups.38-40

To facilitate comparison to available experimental data,
we have also computed 1H chemical shifts taking tetram-
ethylsilane (TMS) as reference. In terthiophenes and similar
derivatives it is experimentally observed that for protons in
the central ring δ(H) oscillates between 7.0 and 7.7 ppm,
while for the central ring δ(H) ) 7.0-7.2 ppm.41 In the case
of pentathienoacene, it has been determined that δ(H1) )
7.4 ppm and δ(H3) ) 7.3 ppm. In addition, an increase of
proton chemical shifts with the number of rings has been
found in analogous compounds.42 A reasonable agreement
is encountered between these experimental values and the
calculated values reported in Table 2, which illustrates the
quality of our theoretical data. Still, let us remark that our
analysis is based on the π-contributions to the out-of-plane
shielding. Such contribution is not available to experiment,
but according to the classical picture is the one directly
related to aromaticity.

Other criteria as, for instance, the Harmonic Oscillator
Model of Aromaticity, HOMA,43 (see Table 3) lead to similar
conclusions in quantifying the aromaticity of the studied
species. The HOMA index takes the value of 0 for a Kekulé
structure of a typical aromatic system and the value of 1 for
systems with all bond lengths equal to the optimal value as
in benzene. We find that the HOMA indices calculated for
the thiophene rings in the fused oligomers are larger than
those obtained for the nonfused compounds and that they
increase with the size of the oligomer. This suggests once
more that oligothienoacenes are slightly more aromatic than
nonfused oligothiophenes and that the degree of aromaticity
increases with the oligomer length. It is also observed that
while in the aromatic oligomers the largest indices are
encountered for the terminal rings, in the quinoidal structures
the highest HOMA index corresponds to the central ring.
This correlates with the slight aromatization of the central
part of the quinoidal structures inferred from π-deshielding
values.

3.2. Current Density Maps. The representations of the
current density induced by a uniform magnetic field applied
along the positive z axis perpendicular to the molecular plane
provide a direct visualization of the phenomenology of
molecules in a magnetic field. By applying the RCM, it is
possible to quantify the aromaticity of the molecule and the
delocalization of the π-electrons through the modulus and
the direction of the currents. Two different kinds of current

Figure 1. Streamlines of the total current density (left) and π-electron contributions to the current density (center) on a plane
at 1.1 bohr above the molecular plane and contour levels for the modulus of the π current (right) for (top to bottom) 3T, 5TA,
Q3T, and Q5TA. The maximum modulus (contour step) values are 0.069 (0.007), 0.075 (0.008), 0.033 (0.005) and 0.034 (0.005),
respectively, in au.
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density maps have been used to this aim. The first type
displays the streamlines of the current density with the
corresponding modulus represented by contour curves. The
second type uses arrows in the direction of the current, their
length being locally proportional to the current density in
that point. The second type of maps yields a less-detailed
description, but it is enough to illustrate the essential features
of the flow. The region examined in this study is ap-
proximately that of maximum of the π-density, 1.1 bohr
above the plane of the molecule.44 Diamagnetic currents are
clockwise, while paramagnetic ones are in the opposite sense.

Figure 1 shows the streamlines of the total and π-current
densities as well as the modulus of the π-current density for
the four trimers under study. The streamlines for the total
current density (left column in Figure 1) present common
features in all systems: a diamagnetic flow runs around the
molecular periphery and paramagnetic vortices appear on the
ring centers, which is typical of planar conjugated cyclic
molecules. The π-current density maps (central column in
Figure 1) display different characteristics for each molecule.
For the aromatic trimers, there exist strong diatropic ring
currents, but their topologies are sensibly different depending
on the structure of the oligomer. For fused 5TA, an intense
current is delocalized around the whole molecular perimeter,
as it were a single cycle, in a way analogous to that found
for naphthalene45 or thieno[3,2-b]thiophene.44 In contrast,
for nonfused 3T, the aromaticity of the thiophene ring
prevails and distinct patterns of noninteracting diamagnetic
currents localized on each thiophene ring are observed. For
the quinoidal trimers, the localized circulation around the
double CC bonds is worth noticing. The different regime of
the π-current densities is best shown by the shape of the
contour maps in Figure 1.

Figure 1 indicates that the intensities of the current
densities are also different. The absolute maximum of the
π-current density corresponds in all cases to islands of flow,
each centered about a sulfur nucleus. Each circulation has
the same diatropic sense as the peripheral ring current but a
much smaller radius. The maximum modulus is different for
each oligomer: 0.069 (3T), 0.075 (5TA), 0.033 (Q3T), and
0.034 au (Q5TA). The π-ring current densities (i.e., the
global circulation of current delocalized around the whole
molecular perimeter as in benzene) also show different
features. In 5TA the most intense π-ring current reaches a
modulus as big as 0.043 au, while in 3T the maximum values
of the ring current intensity are 0.039 and 0.033 au for the
terminal and central thiophene rings, respectively.

The intensity and the pattern of the ring currents change
drastically for the quinoidal trimers (see Figure 1). A
substantial reduction of intensity of the ring currents takes
place with respect to the aromatic partners, the maximum
values being 0.0080 au for Q3T and 0.0081 au for Q5TA
(c.a. five times smaller than in their aromatic partners). The
most distinctive feature observed for the quinoidal trimers
is the diamagnetic π-current showing vortices and foci
located in the regions of the formal double bonds. This result
shows that double CC bonds prevail as the main π-entity in
quinoidal oligomers and suggests that π electrons are more
localized in these systems than in their aromatic partners.

The intensity and direction of the currents can be
simultaneously observed in the maps depicted in Figure 2.
For the aromatic trimers, the ring currents described above
are clearly seen, and it is straightforward to show that fused
5TA is more aromatic than its nonfused counterpart 3T since
the current density is more intense in the former. The
topology of the current density maps for the quinoidal trimers
is very different from that for their aromatic partners. First,
the π-currents are much less intense as it can be easily
checked from inspection of the figure, where the arrows
representing the density currents for the quinoidal systems
Q3T and Q5TA are shorter than those for the aromatic
systems 3T and 5TA. Second, the distribution of the currents
is completely changed: the ring currents flowing around the
molecular periphery of the quinoidal systems appear in
Figure 2 as very short arrowssvirtually pointss, which
describe a weak annular diatropism. At any rate, the currents
localized on sulfur atoms and double bonds clearly predomi-
nate, and local diamagnetic π vortices, typical of formal CdC
double bonds, are observed. Thus, the π electrons are rather
localized as in conjugated nonaromatic polyenes.

Figure 2. π-electron contribution to the current density on a
plane at 1.1 bohr for (top to bottom) 3T, 5TA, Q3T, and Q5TA.
The maximum modulus values are 0.069, 0.075, 0.033, and
0.034 au, respectively. The length of the arrows is normalized
to the maximum modulus in benzene (0.080 au). Intensities
lower than 0.004 au are omitted.
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By close inspection of the two set of maps (Figure 1 and
2) for the quinoidal trimers, one can observe a current
streamline flowing over all the double bonds in the thiophene
rings, which would imply a small degree of delocalization.
Since this current is somewhat more intense in the case of
the fused oligomer, the delocalization effects are slightly
more sizable for the fused oligomer Q5TA than for the
nonfused terthiophene Q3T. This fact is in agreement with
the larger π-contribution to proton deshielding (σzz(π)) in
Q5TA than in Q3T (see Table 2) mentioned above.

There is no major change in the intensity of the ring
currents for the aromatic pentamers 5T and 9TA compared
with their equivalent trimers. However, significant differences
are found for quinoidal oligomers, for which the ring currents
have intensities of 0.0083 (Q5T) and 0.0088 au (Q9TA).
The fused Q9TA pentamer therefore shows ring currents
almost 10% more intense than the corresponding Q5TA
trimer. The streamlines and modulus maps (Figure S3)
present characteristics which are completely similar to those
discussed for the corresponding trimers, i.e., peripheral ring
currents around the whole aromatic structure for fused 9TA,
in-ring-restricted currents for the aromatic nonfused 5T, and
circulation involving the ethylenic bonds for the quinoidal
oligomers Q5T and Q9TA. The arrows maps displayed in
Figure 3 illustrate an important feature that is not detectable

in previous maps. For Q9TAsand for longer thienoacenes,sit
is observed that the outward current in the CC double bonds
is much more intense than the return current inside the rings,
indicating a larger delocalization of the π-electronic density.
In fact, the diamagnetic perimeter circulation grows going
from Q5T (in which vortices about the double bonds are
clearly discernible) to Q9TA (in which no closed current
loops are found in the region of internal formal double
bonds). This effect is only observable for the central rings
of fused Q9TA. We could not detect it either in the nonfused
Q5T or the quinoidal trimers, which suggests that the
delocalization of the ethylenic bonds requires a minimum
size of the oligomer to take place. In Q9TA the current
density about double bonds cannot form closed loops. On
the other hand, it gives rise to continuous π-ring current
flowing all over the carbon skeleton visible in the map of
Q9TA as a peripheral delocalized stream more intense than
in the other quinoidal oligomers.

Summarizing, the stronger intensity of the peripheral ring
π-current, the absence of closed current loops about the
formal double bonds, and the consequent weakening of the
return currents indicate that Q9TA possesses a higher degree
of π-conjugation than other quinoidal oligomers. This is
confirmed by the numerical estimates of the π-contribution
to the out-of-plane component of proton magnetic shieldings.

Figure 3. π-electron contribution to the current density on a plane at 1.1 bohr above the molecular plane for (top to bottom) 5T,
9TA, Q5T, and Q9TA. The maximum modulus values are 0.069, 0.075, 0.033, and 0.036 au, respectively. The length of the
arrows is normalized to the maximum modulus in benzene (0.080 au). Intensities lower than 0.004 au are omitted.
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4. Conclusions
By means of magnetic criteria, we have evaluated the
aromaticity of a series of thiophene-based oligomers with
both fused/nonfused and aromatic/quinoidal structures. Our
theoretical analysis uses a comparison of results obtained
from calculations of magnetic susceptibility, 1H NMR shie-
ldings, and ring currents. All the considered systems, either
aromatic or quinoidal, exhibit large and negative values of
the magnetic susceptibility and, in particular, of the �zz

component. The deshielding σzz(π) contribution to the proton
shielding tensor clearly indicates that fused oligothienoacenes
are slightly more aromatic than nonfused R-oligothiophenes.
It also implies that the degree of aromaticity increases with
the oligomer length and going from inner to outer thiophene
rings along the chain. π-deshielding values also predict a
weak aromatization of the central part of the conjugated chain
for quinoidal oligomers increasing with the oligomer size.
These trends are also supported by the values obtained
for the aromaticity HOMA index. The conversion from
aromatic to quinoidal structures obviously implies a loss of
aromaticity, which is larger in the case of the thienoacenes.

The π-currents induced by a uniform magnetic field
applied perpendicular to the molecular plane display a
drastically different topology depending on the structure of
the oligomer. Fused oligothienoacenes behave as single
cycles and show an intense current flowing around the whole
molecular perimeter. In contrast, the aromaticity of the
thiophene ring prevails for nonfused R-oligothiophenes which
present diamagnetic currents around each thiophene ring. For
the quinoidal oligomers, local diamagnetic π vortices, typical
of formal CC double bonds, are observed, indicating that
the π electrons are rather localized as in conjugated,
nonaromatic polyenes. However, the electronic circulation
around the ethylenic bonds in the quinoidal nonathienoacene
(Q9TA) tends to delocalize all over the carbon skeleton
giving the molecule some aromatic character. The effect is
more pronounced for the central rings and is not observed
for the trimer Q5TA, thus suggesting that the delocalization
of the ethylenic bonds requires a minimum size of the
oligomer to be effective. A progressive gain of aromatic
character is therefore expected on increasing the length of
fused quinoidal systems. This effect has been already
predicted for quinoidal benzene-fused systems.37

Acknowledgment. This work has been supported by
the Spanish Ministry of Education and Science (MEC; pro-
jects CSD2007-00010, CTQ2006-14987-C02-02, CTQ2007-
67143-C02-01/BQU, and CT2009-08790), the Generalitat
Valenciana (ACOMP07/163, GV/2007/093, and GVAINF
2007-051), and European FEDER funds. J.A. acknowledges
the MEC for a FPI doctoral grant.

Supporting Information Available: CTOCD-DZ2/6-
31G** perpendicular component of 1H NMR shieldings (σzz)
and contributions from π electrons for R,R′-linked oligoth-
iophenes containing three, five, and seven rings, streamlines
and modulus of the π current for 5T, 9TA, Q5T, and Q9TA,
and a sensibly enlarged version of Figure 1 in order to
facilitate its interpretation. This material is available free of
charge via the Internet at http://pubs.acs.org.

References
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Abstract: A multicore parallelization of Kohn-Sham theory is described, using standard
commodity multisocket and multisocket/multicore shared-memory processors. Near-linear scaling
of the parallel parts of the code was observed up to the maximum of sixteen cores that were
available for benchmarking, and an order of magnitude reduction in run time was achieved
running using sixteen threads on a quad-socket quad-core Xeon system. The speed-ups achieved
using multisocket/multicore processors were competitive with those achieved using numerical
accelerator cards.

Introduction
Recent advances in method development, computing tech-
nology, and algorithm design have allowed electronic
structure theory methods to be applied routinely to large
biological molecules.1-3 However, ab initio electronic
structure methods are not yet widely used in biomolecular
simulations for drug design or computational enzymology.
The computational expense of ab initio calculations of
biomolecular systems is such that access to large high
performance computing (HPC) facilities is typically required.
Drug design or computational enzymology simulations are
commonly performed using commodity computing resources
(e.g., desktop computers or Beowulf clusters), and so most
calculations rely on inexpensive semiempirical methods, such
as AM1,4 PM3,5 or tight binding.6

Recent changes in the way that commodity processors are
designed have made it increasingly difficult for programmers
to extract the full double-precision computing power that is
available. In this paper we describe a parallel implementation
of Kohn-Sham density functional theory (DFT)7,8 optimized
for modern commodity processors and fully benchmark this
port to assess whether it is practical to use widely available
computer hardware to run DFT simulations on biomolecular
systems routinely.

Numerical Accelerators and Multicore
Processors
Moore’s lawsdevised in 1965sstates that the number of
transistors that can be placed inexpensively into an integrated

circuit doubles every two years.9 This observation has
remained true for over forty years, and for most of this time,
as the number of transistors in the processor doubled, so too
did the clock speed. As clock speeds increased, each
generation of processor became capable of performing more
floating point operations per second, and so scientific
applications automatically ran more quickly.

Recently, there has been a sea change. While transistor
counts are still doubling, problems of managing power
consumption and heat dissipation mean that the processor
clock speed of commodity processors has remained static
since around 2004 or indeed has even been falling. The extra
transistors have been used to provide larger on-chip memory
caches or to add extra processor units (called cores). Thus
commodity dual-core processors (which can run two inde-
pendent threads of execution simultaneously per processor)
became available from 2005 and quad-core from 2007. Oct-
core processors are likely to become available in 200910 (note
that this follows the lead of the development of HPC
processors, where dual-core chips, such as the IBM POWER4,
have been available since 2001 and multisocket symmetric
multiprocessor [SMP] nodes are common). Many existing
scientific applications that were developed for commodity
processors were designed to use only a single thread of
execution. They can thus only use a single core of the
processor and cannot automatically take advantage of any
additional cores that are available. Thus, the automatic and
dramatic reduction in run-times for calculations on com-
modity hardware is no longer assured.* Corresponding author e-mail: fred.manby@bris.ac.uk.
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One solution to this problem is provided by numerical
accelerators. In these processor chips the large numbers of
available transistors are arranged to create hundreds of
minicores, such that large numbers of floating point opera-
tions can be performed in parallel. For example, general
purpose graphic processing units (GPGPUs) evolved from
3D graphics processors and can perform hundreds of floating
point operations simultaneously within each clock cycle.
Dedicated numerical accelerators have also been developed,
such as the ClearSpeed CSX600 and CSX700 chips, each
of which can also perform hundreds of floating point
operations in parallel.11 While these accelerators provide
large amounts of computing power, algorithms must be
redesigned to fit the paradigm of performing hundreds or
thousands of independent parallel computations. This requires
significant effort, but the reward can be dramatic reductions
in the run time of the calculation.

There has been significant interest and success in porting
ab initio quantum chemistry programs to numerical accelera-
tors.12-18 Recently, we demonstrated a port of the DFT code
from the Molpro quantum chemistry package19 that was
parallelized for ClearSpeed numerical accelerator cards.13

In this work the Coulomb problem was reformulated to be
dominated by numerical quadrature, and, as a result, good
scaling was found over the 2304 processor elements available
in a ClearSpeed CATs system. This port was capable of
speeding up DFT calculations of medium-sized (30-50
atom) molecules by over an order of magnitude.13 Calcula-
tions on molecules of about this size are needed for QM/
MM calculations on biomolecular systems.1

The algorithms developed to port the DFT calculation to
ClearSpeed are generally applicable to any processing
platform that is capable of operating on multiple double-
precision values in parallel. Commodity processors are now
capable of this, both via vector instruction sets (such as SSE
for Intel or AMD processors20) and by providing access to
multiple cores. Dual-core or quad-core desktop processors
are now readily available, and modern Beowulf computer
clusters are now being built from large numbers of multi-
socket/multicore processors. For example, a dual-socket/
quad-core machine, here called a dual-quad, contains two
quad-core processors that both share the same memory
address space; on such a system eight threads of execution
can run efficiently in parallel. If SSE2 is available, then a
dual-quad system can perform sixteen double-precision
operations at a time. Comomodity oct-core processors are
likely to become readily available some time over the next
year,10 and it is not unreasonable to expect that commodity
quad-oct (which could operate on 64 doubles at once) or
even oct-oct platforms (128 doubles at once) will be
marketed.

An advantage of these platforms over accelerators, in
addition to their wide availability, is that they can be
programmed using long-established and portable languages,
such as OpenMP and MPI. This makes maintenance and
porting of the code as processors evolve, and the number of
cores increase, more straightforward. Indeed, there is a long
history of parallelizing quantum chemical programs over
HPC multisocket and multicore supercomputers. Through a

combination of MPI and OpenMP, efficient scaling over
hundreds or thousands of processor cores is readily
achievable.21-28

One method of taking advantage of multicore/multisocket
systems is to completely design the quantum chemical
program from the ground up to use multiple threads of
execution. For example, this is the approach taken by the
PQS quantum chemical program,29 that was developed since
1998 to use the multiple processors available in commodity
Beowulf clusters. The ONETEP30,31 DFT program also takes
this approach, being designed from the start to run in parallel
on a range of different architectures, including commodity
clusters. An alternative approach, and the one we adopt in
this paper, is to identify the computationally demanding
bottlenecks of the calculation and to adapt just those to run
over multiple cores. Parallelization of the bottlenecks of the
calculation can be an effective strategy; for example,
Kleinschmidt et al.32 parallelized the matrix-vector multi-
plication which was the most time-consuming part of their
direct multireference configuration interaction (MRCI) code.
They achieved good scaling over commodity multicore
processors but noted that the memory bandwidth to the
processor became a significant bottleneck, particularly as the
number of cores per processor increased.

Theory

DFT has two main bottlenecks when applied to 30-50 atom
systems: the evaluation of the Coulomb matrix

and the numerical quadrature used to evaluate the exchange-
correlation contribution to the Fock matrix

Here, and throughout, we use the notation ( · | · ) to denote a
two-electron repulsion integral (ERI), so for example

The numerical quadrature runs over the points rλ, with
weights wλ, and Vλ

xc ) Vxc(rλ), and �Rλ ) �R(rλ).
It is straightforward to parallelize numerical quadrature

by distributing batches of integration points between process-
ing cores. The Coulomb term is more problematic. Direct
calculation of the Coulomb contribution requires four-index
ERIs (R�|γδ). Density fitting33,34 can be used to treat the
Coulomb contribution using just two- and three-index
integrals. The conventional Kohn-Sham density

is approximated using an auxiliary basis of fitting functions,
�A

JR� ) ∑
γδ

γγδ(R�|γδ) (1)

VR�
xc ) ∫ drVxc(r)�R(r)��(r) ≈ ∑

λ
wλVλ

xc�Rλ��λ (2)

(R�|γδ) ) ∫ dr1 ∫ dr2

�R(r1)��(r1)�γ(r2)�δ(r2)

r12
(3)

F(r) ) ∑
R�

γR��R(r)��(r) (4)
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Here dB are the density-fitting coefficients, calculated by
minimizing the Coulomb self-energy of the fitting residual34

The Coulomb Fock contribution becomes

However, this requires the evaluation of a large number
of three-index integrals. To achieve the very fine-grained
parallelism required for the port to the ClearSpeed accelera-
tor, we introduced a quadrature-based Coulomb method.13

The details can be found elsewhere,13 but for convenience
the key points of the so-called grid-based density fitting
Poisson method (GDFP) for the Coulomb problem are as
follows:

1) The density is expanded in a basis that contains a small
number of standard, atom-centered basis functions �A, and
many Poisson functions of the form ∇2�B.35,36

2) Three-index Coulomb integrals involving Poisson
functions become short-ranged overlap-like integrals, which
are evaluated by quadrature.

3) The remaining, small number of conventional Coulomb
integrals are evaluated analytically.

By using quadrature, both the grid-based Coulomb method
and the treatment of exchange-correlation fall into the class
of embarrassingly parallel problems, and it is expected that
a parallel implementation for multisocket/multicore com-
modity processors will result in perfect linear scaling for
these steps.

Bottlenecks

There are three bottlenecks in GDFP Kohn-Sham theory
for our target system sizes. These, in order of decreasing
time, are

1) The evaluation of the conventional Kohn-Sham density
at each grid point, Fλ.

2) The quadrature-based evaluation of the exchange-
correlation contributions to the Fock matrix.

3) The quadrature-based GDFP evaluation of the Coulomb
contribution.

The first bottleneck is the calculation of the density on
the grid, Fλ, which is evaluated during each Kohn-Sham
iteration based on density matrix, γR�, and the representation
of each orbital at each grid point, �Rλ

The density on the grid is used to evaluate the exchange-
correlation potential on each grid point, Vλ

xc, which is used
to calculate the exchange-correlation contributions to the
Fock matrix

(Similar terms arise for gradient-corrected functionals).
The density on the grid is also used in the GDFP-based

Coulomb numerical quadrature. The quadrature is used to
evaluate the contribution to the Coulomb Fock matrix that
arises from the Poisson part of the fitted density

Program Design

The three bottlenecks in the calculation each involve evalu-
ation of values at all of the large number of independent
quadrature grid points. It is therefore natural to design the
program so that the outer loop is over grid points, and thus
parallelization is achieved by using vectorization to process
multiple grid points per processor cycle and by dividing
batches of grid points between processor cores. Vectorization
of double-precision operations on x86 and x86-64 processors
such as Intel Xeon or AMD Opteron is achieved by using
version 2 of the SSE instruction set (SSE2),20 which can be
generated automatically by a good compiler, or which are
available directly to the programmer in the C and C++
languages via intrinsics (in the emmintrin.h header file).

Dividing batches of grid points between processor cores
can be achieved using OpenMP. OpenMP provides a set of
compiler pragmas in C, C++, or Fortran, which the
programmer can use to delineate parallel and serial parts of
the code. OpenMP was first published in 1997, at which time
commodity multisocket or multicore platforms were not
available. Ports of code to OpenMP were thus limited to
specialist hardware, such as the Silicon Graphics Origin 2000,
on which a parallel port of part of the Gaussian 98 quantum
chemical program using OpenMP was demonstrated.37

OpenMP is easy to use, but efficient parallelization requires
that the programmer ensures that data synchronization
between the serial and parallel parts of the code occurs
infrequently and that each parallel batch computes as much
as possible using thread-local data. Thread-local data are data
which exist in memory that is owned and accessed by only
a single thread of execution, and so no synchronization is
needed between threads when reading or writing that data.
This requires tight control of memory read/write operations,
and of which data are thread-local and which are global. This
is best achieved using scoping, where variables that represent
data that are thread-local exist only within the parallel regions
of the code.

C++ is a computer language that provides scoped variable
declarations (e.g., a variable can exist only within a loop,
and is not accessible outside the loop). Because of this, and
because C++ provides direct access to SSE2, it was decided
to rewrite the computationally expensive kernels of the
Molpro DFT implementation in C++.

Vectorization Using SSE2. Vectorization of the DFT
calculation was achieved by batching together grid points
into vectors. A C++ class, called MultiDouble, was created
to represent a vector of doubles within the code. An ancillary

F̃(r) ) ∑
B

dB�B(r) (5)

∆ ) 1
2

(F - F̃|F - F̃) (6)

JR� ) (R�|F) ≈ (R�|F̃) ) ∑
B

dB(R�|B) (7)

Fλ ) ∑
R�

γR��Rλ��λ (8)

VR�
xc ) ∑

λ
wλVλ

xc�Rλ��λ (9)

JR� r ∑
λ

wλ�Rλ��λ[ ∑
B

dB�Bλ] (10)
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class, called MultiPoint, was then created to represent a
vector of grid points. SSE2 intrinsics were then added to
the member functions of MultiDouble to allow hardware
vectorization to be used where it was available. The SSE2
code was hidden behind conditional statements, so the code
is portable to platforms where SSE2 is not available.

Parallelization Using OpenMP. Each of the three bottle-
necks is written as a loop over MultiDouble batches of grid
points. All application-global read-only data are accessed via
read-only pointers, thereby ensuring that synchronization
between threads is not necessary to access that data. Each
thread, when entering a parallel region, creates a local
workspace in which to assemble the intermediates during
the calculation. This local workspace is accessed via variables
local to the scope of the parallel region and is cleared at the
end of each parallel section. Synchronization between threads
occurs only when thread-local contributions to the exchange-
correlation and Coulomb parts of the Fock matrix are
summed.

Screening Orbitals and Caching Data. All three bottle-
necks of the calculation involve loops over all pairs of atomic
orbitals and over each grid point. For large molecules,
screening small contributions of orbitals on remote grid
points reduces the scaling of computational work from cubic
to linear with molecular size.

The representation of each orbital at each grid point, and
the decision of whether or not an orbital should be screened,
is a constant throughout the DFT calculation and does not
need to be recalculated at each Kohn-Sham iteration.
However, the memory required to store the representation
of the orbitals on the grid scales with the number of orbitals
times the number of grid points and can take several
gigabytes for 30-50 atom molecules and commonly used
basis sets. This memory requirement is naturally reduced by
the application of screening, as only the non-negligible
orbitals at each grid point need to be saved. The memory
requirement then scales linearly with molecule size for
sufficiently large cases.

Screening has been implemented on the basis of Multi-
Double batches of grid points. Each MultiDouble batch is
assigned a unique identification number, and an array of
MultiDouble objects is then used to store the representation
of only the non-negligible orbitals for this batch of grid
points. This is then cached using a dictionary container,
indexed using the unique identification number. A dictionary
cache is used to allow the program to gracefully cope with
cases where there is insufficient memory to store all of the
orbitals on the grid. In these cases, as many MultiDouble
batches that can fit into the cache are saved, while the
remainder are recomputed for each Kohn-Sham iteration
as needed.

Results

Benchmarking System and Platforms. The OpenMP
DFT code was benchmarked by calculating the DFT B-LYP
single point energy of an analogue of the neuraminidase
inhibitor, DANA (Figure 1). This molecule is typical of those
proposed during rational drug design, and it consists of 34
atoms, of which 17 are hydrogen.

The DFT energy was calculated using three different basis
sets, 6-31G*, cc-pVDZ, and aug-cc-pVDZ, to investigate
how well the code scaled as the computational cost for each
grid point increased. Density fitting was performed using a
fitting set optimized for the cc-pVTZ atomic orbital basis.38

For a carbon atom, the set consists of 1s1p1d standard
Gaussian functions and 10s7p5d2f1g Poisson functions.

The code was benchmarked on four different platforms
(see Table 1), chosen to represent a balance between AMD
and Intel processors, and spread the range from two-socket
to eight-socket platforms and dual-core to quad-core proces-
sors. To ensure that comparisons between the platforms were
not biased by different compiler or OpenMP implementa-
tions, the C++ DFT code was compiled on all platforms
using GCC 4.2,39 with the libgomp40 library provided with
GCC.

Selecting a Vector Size. First, the sensitivity of perfor-
mance to the size of the MultiDouble vector was investigated.
While SSE2 hardware vectors are currently limited to just
two doubles (as 128-bit registers are used), the MultiDouble
class provides a software vector, the size of which can be
controlled using a compile-time constant. Using a large
vector is likely to improve the speed of the code, as it should
allow for efficient pipelining. However, large vectors require
more memory, which can have a negative impact on cache
management and performance. To investigate this, the
MultiDouble vector size was varied in powers of two from
8 to 128 doubles, and the impact on the speed of each of the
three bottlenecks was measured (Figure 2).

While the exchange-correlation and numerical Coulomb
bottlenecks benefit from larger vector sizes, the density
bottleneck performs best using a vector size of 16 or 32. It
is also clear that while the performance of the three
bottlenecks is roughly equal using both the 6-31G* and cc-
pVDZ basis sets, the performance of the exchange-correlation

Figure 1. DANA, the test molecule used to benchmark the
OpenMP DFT code.

Table 1. Four Multisocket/Multicore Platforms Used To
Benchmark the OpenMP DFT Code

vendor model
speed/
GHz platform

memory/
GB cores peaka

AMD Opteron 2218 2.59 dual-dual 8 4 20.7
Intel Xeon E5472 2.80 dual-quad 8 8 44.8
AMD Opteron 8220 2.80 oct-dual 32 16 89.6
Intel Xeon X7350 2.93 quad-quad 32 16 93.8

a Peak double-precision performance in GFLOPS.
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and density code is significantly reduced using aug-cc-pVDZ.
This suggests that the increased memory-transfer require-
ments of this larger basis set may be stalling the calculation.

In addition to looking at the speed of the bottlenecks, the
total run time of the calculation was also investigated as a
function of vector size (Figure 3). From this it is clear that
the preference of the density calculation for smaller vectors
out-competes the preference for the other bottlenecks for
larger vectors, and so the best performance is obtained using
a vector size of 16 or 32. This observation was checked and
found to be true on all of the other benchmark platforms,
and so a vector size of 16 was chosen for all further tests.

Screening and Caching Orbitals on the Grid. The
performance gains of orbital caching and screening were
assessed. First, the total run time of the DFT calculation for
each of the three basis sets was measured on the dual-dual
Opteron 2218, both with the cache enabled and with the
cache disabled. Using a dictionary-based cache significantly
improves the run time, as shown in Table 2. The run time is
reduced by 40-50% for the 6-31G* and cc-pVDZ calcula-
tions, but there is a comparatively smaller reduction for aug-

cc-pVDZ. This is because the time required to perform each
iteration (63 s) is much larger than the time required to build
the orbitals on the grid (7 s). In addition, while look-up of
the orbitals from the cache remains fast (taking just 0.1 s
per iteration), the actual transport of the data for the orbitals
on the grid from main memory appears to be hitting the
bandwidth limit. This is evidenced by a reduction in
computational efficiency from 3.3 GFLOPs to 2.8 GLOPs
for the density calculation when the cache is used, compared
to when the cache is disabled. Despite this, the use of the
cache is still beneficial. Building the orbitals on the grid takes
between 5-7 s, and, without the cache, this must be repeated
for each Kohn-Sham iteration.

The cost of evaluating orbitals on the grid can be reduced
through a per-orbital/per-grid point screening algorithm. At
the time of building the orbitals, a screening test is performed
which compares the absolute value of each orbital at each
grid point with a screening threshold (10-15). The screening
threshold was chosen to ensure that there was no detectable
numerical difference between the screened and unscreened
energies, but obviously greater savings could be made at the
expense of some numerical precision. If the density is less
than the screening threshold for each grid point for a
MultiDouble batch (16 grid points), then this orbital is
discarded for this batch of grid points. This slightly reduces
the cost of building the orbitals on the grid, but, more
importantly, this test absolutely removes all insignificant
orbitals at each batch of grid points. As the subsequent parts
of the calculation scale with the square of the number of
significant orbitals times the number of grid points, the cost
of building all orbitals at all grid points is more than
recovered by the savings in the later stages. This is
demonstrated in Table 3, which shows that the total time
paid to screen and build the orbitals on the grid is
significantly less than the time saved when performing
screening.

Figure 2. Average speed of calculation for the three main
bottlenecks from each Kohn-Sham iteration for different
MultiDouble vector sizes, for three different basis sets.
Calculated using four threads on a dual-dual Opteron 2218
(solid: exchange-correlation contributions, dashed: density,
dotted: numerical Coulomb).

Figure 3. Total run time (wallclock) for different MultiDouble
vector sizes, for three different basis sets. Calculated using
four threads on a dual-dual Opteron 2218.

Table 2. Required Size of the Orbital Cache in Megabytes
for Each of the Three Basis Sets, Together with the Run
Time (Wallclock), in s, of the DFT Calculation with Both the
Cache Enabled and Cache Disableda

basis set cache size cache enabled cache disabled

6-31G* 1819 146 296
cc-pVDZ 2128 256 409
aug-cc-pVDZ 3060 1002 1066

a Calculated using four threads on a dual-dual Opteron 2218.

Table 3. Time Required To Build the Orbital Cache, in s,
Compared to the Total Run Time (Wallclock), in s, for the
DFT Calculation, for Three Basis Setsa

basis set threshold % screened build run

6-31G* 10-15 49 5.2 146
0 9 5.9 306

cc-pVDZ 10-15 47 5.5 256
0 9 6.2 407

aug-cc-pVDZ 10-15 43 7.3 1066
0 8 7.6 1722

a Calculated using four threads on a dual-dual Opteron 2218.
Times with screening (threshold ) 10-15) and without screening
(threshold ) 0) are shown, together with the percentage of orbital/
grid batches that are less than or equal to the screening threshold.
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Benchmarking Manual SSE. All of the benchmark
processors support the use of SSE2 vector instructions.
Manual SSE2 code can be easily enabled or disabled using
a preprocessor flag within the implementation of the Mul-
tiDouble vector class. Manual SSE2 code is used extensively
in the density calculation, while it is used sparingly when
calculating the exchange-correlation contributions (for the
reason, see the Appendix). The impact on enabling manual
SSE2 on computational efficiency is shown in Table 4.

While manual SSE2 has little effect on the raw speed of
the exchange-correlation and numerical Coulomb bottlenecks,
the calculation of the density is the major bottleneck that
dominates the total run time (approximately 40%). The extra
2-3 GFLOPs that is obtained by enabling manual SSE2
therefore has a large impact on the run time, particular when
using a small number of threads (see Table 5). Because the
use of manual SSE2 always reduced the run time, it was
enabled for all further tests.

Scaling of the Bottlenecks. The previous benchmarks had
validated the benefits of using a vector class, caching the
representation of the orbitals on the grid, performing grid-
based screening, and using manually coded SSE. The final
part of the design to test was the use of OpenMP to
parallelize the loops over MultiDouble batches of grid points.
First, the scaling of the computational speed of each
bottleneck was measured as a function of the number of
threads. The speed was measured during each Kohn-Sham
iteration of a full calculation and then averaged. The
dependence of speed on the number of threads is shown in
Figures 4, 5, and 6 for exchange-correlation contributions,
calculation of the density, and numerical Coulomb respectively.

These results show that, as expected, the use of quadrature
has resulted in linear scaling for each of the bottlenecks, even
up to 16 threads. However, while this is seen for the 6-31G*

and cc-pVDZ calculations, the limits of memory bandwidth
mean that the scaling of the bottlenecks of the aug-cc-pVDZ
calculations quickly tops out. Here, the quad-quad Xeon
platform performs best, with linear scaling up to 8 threads
for the exchange-correlation and numerical Coulomb bottle-
necks and with linear scaling maintained up to all 16 threads
when evaluating the density. This contrasts with the dual-dual
and oct-dual Opteron platforms, which both suffer from
substantially degraded performance of the exchange-correla-
tion and numerical Coulomb bottlenecks (only 8% of the
peak performance of the oct-dual Opteron is used for the 16
threads aug-cc-pVDZ exchange-correlation calculation, com-
pared to 22% using 16 threads on the quad-quad Xeon).
When making this comparison, it must be remembered that
the Opteron processors used in these benchmarks are older
designs than the Xeons, and it is likely that the latest AMD
processors are likely to perform better in this regard.

In general these results show that the code performs well
across each of the benchmark platforms. The evaluation of

Table 4. Average Speed, in Gigaflops, of the Three Main
Bottlenecks over Each Kohn-Sham Iteration for Three
Different Basis Sets, Both with Enabled and Disabled
Manual SSE2 Codea

bottleneck SSE enabled 6-31G* cc-pVDZ aug-cc-pVDZ

exchange- yes 13.8 14.0 11.0
correlation no 13.9 14.0 11.2
density yes 11.7 10.9 9.6

no 8.6 8.3 7.7
numerical yes 8.7 9.6 8.3
Coulomb no 8.3 9.0 7.9

a Calculations performed using eight threads of a dual-quad
Xeon E5472.

Table 5. Total Run Time (Wallclock), in s, for the DFT
Calculation Using Three Different Basis Sets, Both with
Enabled and Disabled Manual SSE2 Codea

basis set SSE enabled 1 core 8 cores

6-31G* yes 308 59
no 357 62

cc-pVDZ yes 550 91
no 639 101

aug-cc-pVDZ yes 1606 290
no 1854 314

a Calculations performed using either a single thread or eight
threads of a dual-quad Xeon E5472.

Figure 4. Average speed of the calculation of the exchange-
correlation contributions to the Fock matrix, for three different
basis sets (solid: 6-31G*, dashed: cc-pVDZ, dotted: aug-cc-
pVDZ) as a function of the number of threads of execution
on each of the four benchmark platforms.

Figure 5. Average speed of the construction of the density,
for three different basis sets (solid: 6-31G*, dashed: cc-pVDZ,
dotted: aug-cc-pVDZ) as a function of the number of threads
of execution on each of the four benchmark platforms.
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the exchange-correlation components is particularly efficient
on the Xeon platforms, while the dual-quad Xeon E5472 is
consistently the most efficient platform tested. There does,
however, seem to be some room for improvement in the
efficiency of the code used to evaluate the Coulomb numeric
quadrature contributions, with this region of the code having
consistently the lowest performance of the three bottlenecks
and having the poorest scaling and greatest performance
degradation when using the large aug-cc-pVDZ basis set.
One of the reasons for the comparatively poor performance
of this bottleneck is that it is essentially just a product of all
pairs of orbitals with all Poisson orbitals, at each grid point
(see eq 10). This requires large amounts of data (all orbitals
and Poisson orbitals), but very little actual computation (just
three multiplies on four values loaded from four different
regions of memory, in a naive implementation). It is thus
not surprising that this memory-access-heavy but computa-
tionally light bottleneck has the poorest scaling and the
biggest performance degradation with increasing basis size.

Discussion

Benchmarking of the OpenMP DFT implementation has
shown that the code performs well up to the sixteen cores
that were available for testing. Ultimately though, the user
of the code is not really interested in the performance
characteristics of parts of the code. Instead, their primary
interest is likely to be the total run time of the calculation.
This is shown in Table 6, where the total run time of the
DFT calculations on each of the benchmark platforms is
reported using both one thread and using the maximum
number of threads available on each platform.

The original aim of this work was to reduce the run time
to the extent that DFT calculations on commodity processors
are sufficiently fast to allow practical applications in QM/
MM free energy simulations. This has been achieved, with
calculations using 6-31G* or cc-pVDZ basis sets reduced
to less than 100 s for the eight and sixteen core machines.
Indeed, a run time of just 46 s is required using the 6-31G*

basis set on the quad-quad Xeon. QM/MM free energy
calculations based on a recently developed Monte Carlo
method41 require of the order of 1000-2000 QM energy
evaluations run in sequence to calculate a converged QM/
MM relative free energy. This would take approximately
13-26 h using the quad-quad Xeon, using a 6-31G* basis
set, or 1-2 days using a cc-pVDZ basis set on the more
readily available dual-quad Xeon. This is well within the
time scale necessary to make these calculations practical for
drug-discovery type protein-ligand relative binding free
energy simulations or for use in computational enzymology.

Finally, the performance of this OpenMP DFT code must
be compared against the other implementations. Such a
comparison is not entirely fair, due to differences in the
implementation of screening, the use or not of numerical
quadrature for the Coulomb calculation, a different reliance
on and efficiency of the BLAS library, etc. To minimize the
effect of these difference, this comparison was made using
only the dual-dual Opteron (as it was this system that was
connected to the ClearSpeed CATs). Table 7 shows the
comparison of the total run time for the DFT calculations of
the OpenMP code using one thread and four threads against
the run time using an unmodified serial Molpro executable
and against the ClearSpeed-enabled Molpro using one
ClearSpeed dual socket CSX600 card (2 × 96 ) 192 cores)
and using twelve ClearSpeed dual socket CSX600 cards
(2304 cores).

Figure 6. Average speed of the calculation of the Coulomb
numerical quadrature, for three different basis sets (solid:
6-31G*, dashed: cc-pVDZ, dotted: aug-cc-pVDZ) as a function
of the number of threads of execution on each of the four
benchmark platforms.

Table 6. Total Run Time (Wallclock), in s, for the DFT
Calculation Using Three Different Basis Sets, on the Four
Different Benchmark Platforms, As Calculated Using Just
One Core, and Using All Available Coresa

platform basis set 1 core all cores

Opteron 6-31G* 493 146
2218 cc-pVDZ 894 256
dual-dual aug-cc-pVDZ 3371 1002
Opteron 6-31G* 495 59
8220 cc-pVDZ 916 94
oct-dual aug-cc-pVDZ 3364 369
Xeon 6-31G* 308 59
E5472 cc-pVDZ 550 91
dual-quad aug-cc-pVDZ 1606 290
Xeon 6-31G* 345 46
X7350 cc-pVDZ 599 63
quad-quad aug-cc-pVDZ 1751 187

a E.g. all eight cores of the dual-quad Xeon.

Table 7. Comparison of the Run Time (Wallclock), in s, for
the Different Versions of Molpro on a Dual-Dual Opteron
2218 with Attached ClearSpeed CATsa

version 6-31G* cc-pVDZ aug-cc-pVDZ

Fortran 519 801 2070
OpenMP1 493 894 3371
OpenMP4 146 256 1002
ClearSpeed1 283 326 429
ClearSpeed12 39 46 86

a The original serial (Fortran) DFT implementation is compared
to the OpenMP implementation on one core (OpenMP1), the
OpenMP implementation on all four cores (OpenMP4), the Clear-
Speed implementation using one ClearSpeed card (ClearSpeed1),
and the ClearSpeed implementation using all twelve ClearSpeed
cards (ClearSpeed12).
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This comparison raises two interesting points. First, the
speed of the OpenMP implementation using one thread is
competitive with standard Molpro, at least for the smaller
basis sets. For the aug-cc-pVDZ basis set, standard Molpro
is significantly faster than the OpenMP implementation,
probably because in serial the numerical Coulomb calculation
is not competitive with analytic integral evaluation. The
second interesting point is that using four threads in the
OpenMP code is quicker than using one ClearSpeed card,
despite the higher peak double-precision performance (66
GFLOPs for one card versus 41 GFLOPs for the dual-dual
Opteron). Again, this is only observed for the smaller basis
sets. The ClearSpeed port is most efficient for larger basis
sets, hence why the performance degradation is significantly
lower when moving up to aug-cc-pVDZ compared to any
of the other implementations.

The observation that the four-thread OpenMP implementa-
tion is faster than using a ClearSpeed card does raise an
interesting question. For smaller systems it may be more
effective to use a multiprocessor/multicore platform as
opposed to using a single numerical accelerator. This can
be quantified, again by using a slightly unfair comparison,
by asking how many ClearSpeed accelerator cards are
necessary to reduce the run time so that it is less than the
minimum run time on each of the multiprocessor/multicore
platforms. For example, the run time for sixteen threads for
the cc-pVDZ calculation on the quad-quad Xeon was 63 s
(Table 6). The run time using four ClearSpeed cards on the
dual-dual Opteron was 102 s (see Table 8). Thus, in this
case, a user would be better served by using the quad-quad
Xeon. However, the run time using five ClearSpeed cards is
59 s, and so a user would be better served by using the
accelerators. The number of ClearSpeed cards necessary to
outperform each benchmark platform for each basis set has
been calculated and is shown in Table 9. Again, it must be
stressed that this is not a completely fair comparison, as the
serial parts of the calculation are computed using an Opteron
2218, which was the slowest of the four processors used in
this study. Despite this, it is clear that it is only the larger
basis sets that benefit from the use of small numbers of
accelerator cards and that large numbers of accelerator cards
must be used in parallel in order to compete against a

multiprocessor/multicore system for drug-sized molecules
with commonly used basis sets.

Given that three of the benchmark systems are faster using
8 or 16 cores than using four ClearSpeed cards (with 768
cores) for the 6-31G* and cc-pVDZ basis sets, questions
should be asked as to whether or not more effort should be
spent adapting algorithms for existing multiprocessor/mul-
ticore architectures. These questions are particularly pertinent
now, as the standards for writing code for numerical
accelerators and the underlying hardware model of these
accelerators have yet to mature. On the other hand, multicore
platforms are ubiquitous, and the languages and methods used
to target them are well-established and performance-portable.
Scientific applications are written over time scales of years
to decades and contain large amounts of accumulated
knowledge. Rewriting them so that they run efficiently in
parallel represents a significant undertaking. Targeting
multiprocessor/multicore machines leads to code that can be
deployed efficiently across a range of platforms and which
is easier to maintain and port over the coming years.
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Appendix

The use of manual SSE2 in the MultiDouble vectors is
only possible if the iteration over grid points occurs in an
inner loop (as this MultiDouble is being used to vectorize
over grid points). The calculation of the density is a sum
over all pairs of orbitals, at all grid points (see eq 8), and so
it is most efficient to use the iteration over grid points as the
inner of the three loops. In contrast, the calculation of the
exchange-correlation contributions is a sum over all grid
points of products of all pairs of orbitals. In this case, it is
most efficient to place the iteration over grid points as the
outer loop, as otherwise poor cache performance is encoun-
tered during the iteration over all pairs of orbitals. Poor cache
performance arises because the representation of orbitals in
memory is arranged in contiguous blocks of 16 doubles (one
for each grid point represented by the MultiDouble batch).
This means that the distance in memory between adjacent
orbitals, commonly called the stride, is 16 doubles. Loops

Table 8. Total Run Time of the DFT Calculations, in s,
Measured Using Different Numbers of ClearSpeed Cards
Available via a ClearSpeed CATs Attached to a Dual-Dual
Opteron 2218

number of cards 6-31G* cc-pVDZ aug-cc-pVDZ

1 283 326 429
2 150 173 231
3 107 122 177
4 89 102 149
5 49 59 130
6 46 55 122
7 43 51 90
8 41 49 88
9 40 47 87

10 39 46 86
11 39 47 86
12 39 46 86

Table 9. Number of ClearSpeed Cards That Must Be
Used To Exceed the Speed of the OpenMP
Implementation with the Maximum Number of Threads
Available on Each of the Four Benchmark Platformsa

platform 6-31G* cc-pVDZ aug-cc-pVDZ

Opteron 2218 3 2 1
Opteron 8220 5 5 2
Xeon E5472 5 5 2
Xeon X7350 7 5 3

a The ClearSpeed calculations ran on a dual-dual Opteron
2218 attached to a ClearSpeed CATs, and this comparison does
not account for the slower speed of the serial parts of the code on
this system compared to the others.
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over pairs of orbitals are therefore inefficient, as the stride
between each iteration is larger than a cache line, and thus
it is likely that different orbitals will exist on different cache
lines. In the original implementation, this lead to poor
performance. This was resolved by preceding the loop over
pairs of orbitals with a loop over the 16 grid points within
a MultiDouble batch, that copied the value of the orbital for
that grid point into a temporary array of doubles. This packed
the orbitals on a single grid point together into a single
contiguous block in memory. In effect, this transposed the
memory layout from using grid point as the inner index, to
using orbital as the inner index. The cost of transposing
memory was found to be negligible (formally scaling linearly
with the number of orbitals), while the time saved was
significant (as the cost of looping over pairs of orbitals scales
quadratically with the number of orbitals). However, because
the iteration over grid points was now the outer, not the inner,
loop, manual SSE2 could no longer be used.
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Abstract: The idea of using a dielectric continuum inside a molecule to accurately model molecular
polarizability is extended to include a larger spectrum of bioorganic molecules and the condensed
phase. Atomic polarization radii and an internal dielectric (εin) were fitted to reproduce ab initio B3LYP/
aug-cc-pVTZ polarizability tensors taken from a data set of 707 molecules. The average unsigned
error on the isotropic polarizability and anisotropy are 2.6% and 5.2%, respectively. It is shown that
usual Poisson-Boltzmann contact radii and a low internal dielectric are not appropriate and require
major revision. To account for the anisotropy of polarizability, the internal dielectric (εin) constant
needs to be larger than 6.0. Reinterpreting the theoretical link between εin and the experimental
refractive index (n), this study shows, with a set of 23 organic molecules spanning the entire range
of n, that even with εin ) 24 the obtained refractive indices can correlate well with experiment (slope
of 1.00, intercept of 0.05, and R ) 0.95). The novel methodology used here to calculate a
macroscopic-like refractive index shows that the application of the EPIC parametrization to condensed
phase leads to suitable behavior. Although the primary goal in developing EPIC was to include
polarizability in explicit solvent calculations, we also extend the model to work with implicit solvent.
This requires the use of a 3-zone smooth dielectric function to transition from the polarization dielectric
inside the molecules to the dielectric continuum of the solvent. The parametrization and validation
of this model are performed against 485 experimental free energies of hydration. Using 8 solvent
cavity atomic radii and a single surface tension an average unsigned error of 1.1 kal/mol and a
correlation coefficient of 0.9 are obtained, validating the use of the EPIC model in the condensed
phase.

1. Introduction
The newly introduced treatment of electronic polarization
by an internal continuum (EPIC) was shown to be accurate

in reproducing experimental and density functional (DFT)
molecular polarizability tensors with a remarkably small
number of adjustable parameters.1 Moreover, the high
accuracy found when computing intermolecular interaction
energies, in which the appropriate treatment of electronic
polarization is crucial, opens up the possibility of using EPIC
to include polarizability in force fields.2 This led us to
propose the use of EPIC to embed polarizability in all-atom
explicit-solvent calculations. EPIC uses continuum dielectric
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electrostatic theory to account for the way electronic density
polarizes under the presence of an external electric field that
can come from either other molecules in explicit condensed
phase calculations or the reaction field in an implicit solvent
calculation. In contrast to the point inducible dipoles3-5 or
the Drude’s oscillator models6,7 that use the atomic nuclear
positions as polarizable centers, EPIC employs a polariz-
ability density that induces a dipole density, normally referred
to as polarization, throughout the molecule volume as a
response to the local electric field. In a recent study, Schropp
and Tavan8 proposed that the use of single centers in point
inducible dipole polarizable calculations was responsible for
the large difference between the best condensed phase atomic
polarizability and the best vacuum phase atomic polariz-
abilities previously noticed.9,10 Other studies, based on
Quantum Mechanical (QM) assessment, suggest that the
polarizability in condensed phase should only be slightly
reduced.11 The idea of using a continuum dielectric to
account for electronic polarization was first formulated by
Sharp et al.12 but was not further pursued until Tan and Luo13

optimized the internal dielectric of solutes to produce the
electrostatic potential in the context of Poisson-Boltzmann
calculations with different implicit solvents. In their two
studies,13,14 they do not attempt to give a detailed molecular
polarizability description but rather focus on the shift in
dipole moments when a solute is put in different solvent. It
is difficult to decouple the solvent polarization from the
solute polarization and the cooperative polarization when
calculations in implicit solvent are done. The current study
uses previously developed techniques1,2 to separate the
charge fitting from the polarizability fitting by optimizing,
in the absence of atomic charges, an electronic Volume to
fit quantum mechanics (QM) polarizability tensors for
molecules in vacuum, as was done originally with other
polarizable models.3,5,15 Curiously, we found that in order
to accurately reproduce the polarizability tensors of even
challenging molecules, the atomic radii needed to be much
smaller than the van der Waals (vdW) contact radii usually
used in implicit solvent calculations (e.g., Bondi radii16). At
the same time, the internal dielectric needed to be surprisingly
high in order to reproduce the anisotropy of the polarizabili-
ties. While that work allowed for a systematic way of
adjusting a dielectric function to account for electronic
polarization, it raised two issues: the abnormally high internal
dielectric of 14 seems questionable and the small radii made
implicit solvent calculations impractical. Regarding the first
issue, the dielectric inside the molecule is closely related to
the refractive index squared (ε∞ ) n2) of the pure liquid,
which adopts values between 1.7 and 2.9 for organic liquids,
far below our large values. Regarding the second issue, if
such small atomic radii were used to define the molecular
cavity in solvent, the free energy of charging would become
unrealistically negative e.g. in Poisson-Boltzmann (PB)
calculations. In this work, we specifically address both issues
and demonstrate the physical soundness of the approach. An
important change from our previous work is the use of a
smooth dielectric boundary to represent both the solute and
the solvent polarization. We present a newly designed
dielectric function with 3 zones (3-zone dielectric) that

permits the use of EPIC for implicit solvent calculations.
We show that describing the dielectric function this way
better reflects the underlying physical principles involved in
solvation than the usual 2-zone dielectric (i.e., inside and
outside the cavity).

Another question that we examine is the ability to optimize
the EPIC parameters in a general and robust way with few
parameters on a larger variety of chemical functionality than
in earlier work. For this purpose, we have formed a large
database of QM molecular polarizability tensors for 707
diverse bioorganic molecules (for a total of 4242 polariz-
ability tensor elements) along with their optimized molecular
geometries (cf. the Supporting Information). As will be
outlined below, this data set contains a large variety of
chemical functional groups representing a significant com-
ponent of bioorganic chemistry. This substantially enlarged
parametrization of the polarizable EPIC model is then used
for the calculation of refractive indices and hydration free
energies. The validity of both the internal dielectric function
and the 3-zone dielectric function is assessed with the
independent fit of the solvent cavity atomic radii (which
define the third zone of the function) on 485 experimental
free energies of hydration.

In the remainder of this article, section 2 presents the
theoretical basis and methods employed, where we present
the 3-zone dielectric function for implicit solvent calculations
and we review the polarizability tensor calculation. This is
followed by the theoretical background for the calculation
of the refractive index. A theoretical layout for free energy
of hydration calculations and computational details related
to quantum calculations close this section. Section 3 describes
the chemical data sets used in section 4 where the results
and their analysis are presented. Section 4 closes with a
3-zone dielectric optimization on experimental hydration free
energies, leading into the conclusons.

2. Theory and Methods

2.1. 3-Zone Dielectric in Implicit Solvents. The dielectric
function in continuum approaches is fundamental as it is
modulating all sources of polarization. In this work, we move
away from our previous use of vdW envelope surfaces17

toward a smooth functional form based on a sum of atomic
Gaussians which has previously proven successful18,19 in PB
applications. Although useful, the hard dielectric boundary
often leads to numerical problems: iterative convergence
failure, slower convergence, strong dependency on orienta-
tion and translation, and unstable force evaluations.18,20 The
use of smooth solute/solvent dielectric boundary was shown
to improve over the hard boundary on all these aspects. More
specifically, the molecular dielectric function used in the
present work is given by

where εin is the dielectric constant inside the molecular
volume, and εext the dielectric value outside. The dielectric
here is expressed as a permittivity relative to the vacuum
permittivity. The exponential behaves as a switching function
that is turned on or off depending on the value of a molecular

ε( rF) ) εin - (εin - εext)exp(-A · fin
( rF)) (1)
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‘density’ function fin(rb). The A parameter modulates the
steepness of the switching function. The details of the
dielectric are then incorporated into the ‘density’ function

The summation runs over all atoms, and a 3-dimensional
Gaussian defines the radial extent of the atomic volume; σi

are atomic radii and rbi their positions. The σi will be the
subject of an extensive parametrization in the next sections.
The constant k is set to 2.3442 and p to 2.7 following the
Grant et al. recommendation.18 Equation 1 can be conceptu-
ally understood in terms of electronic density that would have
a constant susceptibility (polarizability density) inside and
drops rapidly as the density vanishes as shown in Figure 1.

The main methodological novelty proposed in this work
is the 3-zone dielectric for the coupling of EPIC with implicit
solvation. When atomic radii are optimized on QM-based
molecular polarizability tensors, their resulting small size
prohibits their use to define the cavity formed by the solute
in implicit solvent calculations. Indeed, it presents a dilemma:
on the one hand, accurate solute polarization requires atomic
radii far smaller than accepted contact radii. On the other
hand, the solvent boundary for implicit solvation requires
atomic radii as large or larger than contact radii. The
resolution to this dilemma is found in challenging the
assumption that the atomic radii for solute polarization and
for the solvent boundary should be the same. There is no
underlying physical reason why the polarization response of
an atom in a molecule would be uniform all the way out to
its contact radius; on the contrary our QM model for
molecules tells us the electron density (the source of
electronic polarization) drops exponentially in moving from
an atomic nucleus toward the contact surface of the molecule.

We believe that it is more reasonable to think that the radial
extent of the electronic polarization can be different from
the vdW radius used for the solvent cavity. The idea
presented here is that both kinds of smooth surfaces could
be simultaneously used: one for solute polarization, formed
with the smaller atomic polarization radii, and one for solvent
polarization, defined with the solvent cavity atomic radii. In
between the two surfaces is a transition region of low
dielectric since it describes where the solvent and the solute
electrons are both at a minimum. This leads to a 3-zone
dielectric function to which we give the form

where εin is the dielectric constant inside the molecular cavity,
εsolV is the bulk solvent dielectric constant (80 for water),
and εtrans is the dielectric constant in the zone of transition
between the solute and the solvent. For the smooth inner
dielectric boundary, A has the same meaning as in eq 1, and
fin(rb) is given by eq 2. The additional exponential term, for
the outer dielectric boundary (with solvent), is a switching
function that turns on when a second Gaussian sum (fsolV(rb))
becomes sufficiently small. The fsolV(rb) term is also given by
eq 2 with the difference that the atomic radii are larger as
they define the solvent cavity. The B parameter is responsible
for the steepness of the cavity boundary, but with a
sufficiently large value it has the effect of moving the position
of the boundary as if the radii were scaled. The radial
behavior of the 3-zone dielectric is illustrated in Figure 2
for a single atom and for the 4-pyridone molecule, both with
typical parameters. In eq 3, it is important to set εtrans ) 1
when the first zone of the dielectric function is fitted on
molecular polarizability since the shape of the dielectric
function needs to drops to one in order to present the same
ability to polarize. Also, if the atomic partial charges are
fitted with DRESP, a change in the first zone boundary would
also change the ability of the dielectric to form the full
internal polarization taken into account during the charge
fitting process.

2.2. Molecular Polarizability Tensor. In this section, we
review the methodology previously developed to calculate
molecular polarizability tensor with a finite difference
Poisson solver,1 and we summarize how the parameters
involved are optimized in this work.

2.2.1. Method. Our formulation of electronic polarization
based on continuum electrostatics allows the calculation of
induced multipolar moments by considering the bound charge
density, which results from the polarizability density of the
media (from the bound the electrons in our case). A formula
to calculate the bound charge density is21

where Fb is the bound charge density, and Eb(rb) the total
electric field. Physically, Fb is a consequence of the formation
of dipoles at each point in space due to the electric field
(the polarization Pb(rb) or dipole density). The bound charge
density can be thought of as an induced charge density from

Figure 1. This figure shows the smooth dielectric function
used in this work for a single atom with σ ) 0.95 Å, εin ) 12,
εext ) 1, and A ) 10.0 (Cl of the G1-12 set). Starting from
the center of the atom (r ) 0), the dielectric (blue curve) stays
constant until the ‘density’, expressed with a sum of Gaussians
(pink curve), reaches a certain small value that causes the
dielectric to smoothly transition to the external dielectric value.
The steepness and the position of the switching region
depends on the value of the A parameter. The sum-of-
Gaussians density expression is explained in eq 2 (see text).

fin( rF) ) ∑
i)1

Natoms

p · exp(-k
| rFi - rF|2

σi
2 ) (2)

ε( rF) ) εin + (εtrans - εin) exp[-A · fin( rF)] +

(εsolV - εtrans) exp[-B · fsolV( rF)] (3)

Fb( rF)
ε0

) -∇F([ε( rF) - 1] EF( rF)) ) -∇F·PF( rF) (4)
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the dielectric polarization that appears where the dielectric
varies, as an excess of charge builds due to the head or tail
of the dipole density. Although the polarization occurs
everywhere the dielectric is greater than one, the bound
charge density appears in regions of spaces where ε(rb) varies,
such as the dielectric boundary of a molecule. Equation 4 is
useful since it transforms the locally induced dipoles into a
scalar value, the bound charge density, which can be used
more easily as done below. In eq 4, ε(rb) - 1 plays the role
of a local polarizability density, also called the electric
susceptibility, and Pb(rb) ) (ε(rb) - 1)Eb(rb) corresponds to the
induced dipole density (polarization). The analogy with the
point inducible dipole model, a different polarizable model,
is obvious since, in that case, the atomic induced dipole is
given by µb(rbi) ) RiEb(rbi) where µb(rbi), Ri, and Eb(rbi) are the
dipole induced at the atomic position rbi, the atomic polar-
izability, and the electric field at rbi. Here, the polarization is
more smoothly distributed over the molecular volume.
Equation 4 is intrinsic to the definition of Poisson’s equation.

A classical example, for which an analytical solution
exists, is the dielectric sphere in vacuum experiencing an
external electric field. In this case the mathematics show that
bound charges appear on the surface of the sphere with
opposite charge sign on both hemispheres, resulting in an
induced potential equivalent to an ideal induced dipole
moment aligned with the external field located at the center
of the sphere. The induced dipole moment is proportional
to the external electric field, and the sphere polarizability
Rsphere is given by the Clausius-Mossoti equation

where Rsphere is the sphere radius. For a molecular system,
the analytical solution is unknown, and we use a finite

difference algorithm to solve Poisson’s equation numerically
with a uniform electric field in the form of a voltage clamp
applied by means of the boundary conditions. More precisely,
a uniform electric field in the z direction can be produced
with a null potential on one side of the grid boundary and
the value -Eext × Lz on the opposite side, where Lz is the
box size in the z direction, and Eext is the magnitude of the
applied field. On the four other sides, parallel to the field,
the grid boundary potential is simply calculated as a linear
interpolation along the z direction: �(z-z0) ) -(z-z0) × Eext.
As with the dielectric sphere in vacuum, a molecular
dielectric volume responds linearly to the applied field (given
an isotropic dielectric function), and the proportionality
constant is the molecular polarizability tensor. The field is
applied in three orthogonal directions to build the polariz-
ability tensor, which depends on the orientation of the
molecule

where µx,y is the x component of the induced dipole moment
when an external electric field of magnitude Eext is applied
in the y direction. Some experimental values are available
for the eigenvalues of this tensor in vacuum (εext ) 1); also,
the polarizability tensor can be calculated using approaches
based on quantum mechanics (QM) methods such as density
functional theory.

The induced dipole moment is calculated analogously to
the sphere dielectric system, integrating the bound charge

Figure 2. The 3-zone dielectric function allows an accurate description of both the solute polarization and the solvent polarization
within the EPIC approach. (a) The radial component of the dielectric for a single atom (G1-12 aromatic carbon) is shown
together with the polarization (σin) and the solvent cavity (σcavity) atomic radii. Each plateau of the dielectric function defines a
zone. The middle intermediate zone corresponds to the solute/solvent contact distance. (b) The resulting dielectric function is
also shown in the ring plane of 4-pyridone (b) when applying the G2-12 parameters.

Rsphere ) (εsphere - 1

εsphere + 2)Rsphere
3 (5)

R̄ ) [µx,x

Eext

µx,y + µy,x

2Eext

µx,z + µz,x

2Eext

µy,y

Eext

µy,z + µz,y

2Eext

µz,z

Eext

] (6)

1788 J. Chem. Theory Comput., Vol. 5, No. 7, 2009 Truchon et al.



density over space. From eq 4 (or simply from Gauss’s law),
one can show that

In the present context, there is no free charge density Ff(rb)
(from atomic partial charges, for instance), and as such the
bound charge density, induced only by the external uniform
electric field, is given by the divergence of the field. With a
finite difference solver, the total charge (bound and free
charges) can be calculated by integrating over each dif-
ferential volume element (grid cube) which leads to bound
charges on grid points. This can be done simply by
calculating

where qijk, qb
ijk, and qf

ijk are the total charge, the bound charge,
and the free charge inside the volume element associated
with the ijk grid point, and �ijk and �ijk-1 are the electrostatic
potential at the (x,y,z) and (x,y,z-dz) grid points, respectively.
The grid spacing in x, y, and z are given by hx, hx, and hz.
The grid free charge qf

ijk are zero for this calculation, and,
in general, it is given by the atomic partial charges as
distributed on the grid. Finally, the total dipole moment is
given by

With the free charges equal to zero (no atomic partial charge),
the dipole calculated is then the induced dipole, and the only
contributor is the bound charge density. More generally, any
molecular electric moment can be calculated with analogs
to eq 9. The overall procedure to calculate the polarizability
tensor requires three solutions from the numerical solver.
The calculation does not involve atomic partial charges (free
charges) which allows them to be fit independently (although
this must still be done in the context of the molecular
dielectric).

2.2.2. Computational Details. The finite difference Poisson
calculations were performed with a modified version of the
OpenEye Inc. ZapTK.22 The distance between two grid
points was set to 0.35 Å, and the grid boundary was at least
5 Å away from the surface defined by the polarization radii.
Atomic charges of (0.001e were assigned randomly on the
atoms as the grid energy was used to determine the
convergence of the algorithm set to 0.000001 kBT. The results
were not sensitive to these small charges. Atom typing was
assigned via SMARTS23-25 with the OpenEye Inc. OEchem
toolkit.26

2.2.3. Optimization of the Polarizabilities. The atomic
radii were optimized in order to minimize a chi-square
function using a Levenberg-Marquardt algorithm as imple-
mented in scipy,27 a scientific Python library. The error was

defined as the difference between the 6 components of the
polarizability tensor obtained with B3LYP and EPIC

where Rxy,i is one of the six independent polarizability tensor
elements of molecule i either under optimization (EPIC) or
from the QM target values. By using the six independent
tensor elements, we included both the magnitude and the
direction of the polarizability in a natural way.28 We
optimized the cube of the polarization radii because their
contribution to the polarizability grows with the atomic
volume (cf. eq 5). For analysis purposes, we also defined
the average polarizability (eq 11) and the anisotropy of the
polarizability tensor (eq 12) below

where R1 e R2 e R3 are the eigenvalues of the polarizability
tensor. The polarizability anisotropy is significantly harder
to fit than the average polarizability. We defined the error
in the average polarizability (eq 13) and anisotropy (eq 14)
for a set of molecules as

where N is the total number of molecules considered and
QM corresponds to the target value. Finally, the relative root-
mean-square deviation (RRMS) of the tensor was defined
as

and constituted a single metric for the overall fitness of the
optimized polarizability tensors. If the RRMS was calculated
for a single molecule, the summations on the molecules in
the numerator and the denominator were simply omitted.

2.3. Refractive Index Calculations. 2.3.1. Theory. The
dielectric constant of an isotropic material at the high
frequency limit (ε∞) is related to the material refractive
index29 n by

where n is usually measured with the D line of the sodium
spectrum at 589 nm (nD). The ε∞ corresponds to the material’s

Fb( rF) ) -Ff( rF) + ε0∇
F·EF( rF) (7)

qijk

ε0
)

qijk
b + qijk

f

ε0
) -(hyhz

hx
)(�i+1jk + �i-1jk - 2�ijk) -

(hxhz

hy
)(�ij+1k + �ij-1k - 2�ijk) - (hxhy

hz
)(�ijk+1 + �ijk-1 -

2�ijk) (8)

µF ) ∑
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Grid

rFijkqijk (9)
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i
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∑
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2 + (R1 - R3)
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2

2
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N ∑

i

N |Ri,aVg
QM - Ri,aVg|

Ri,aVg
QM

(13)

δaniso ) 1
N ∑

i

N |∆Ri
QM - ∆Ri|

Ri,aVg
QM

(14)

RRMS )
∑

i

molecules
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(Rk,i
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QM)2

∑
i
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∑
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(15)

n2 ) ε∞ (16)
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dielectric constant solely due to the electronic polarization
since the frequency of the visible light is too high for nuclear
relaxation to contribute. Typically, a pure liquid of an organic
compound will have a refractive index between 1.3 and 1.7
leading to a ε∞ between 1.7 and 2.9. Since the work of Debye
and Onsager,12,13,30,31 it has become a dogma that the interior
dielectric (εin) of a solute cavity in implicit solvent models
should be close to the experimental ε∞ in order to capture
thedipolemomentchangeduetothecooperativesolute-solvent
polarization. It is when we seek for accuracy in solute
polarization that we found the generally accepted relation
ε∞ ) εin to badly fail.1 A way to reconcile this puzzling
finding is by computing the macroscopic refractive index
that corresponds to what is measured instead of assuming it
is the same as the internal refractiVe index (quoting On-
sager30). The Clausius-Mossoti equation relates the polar-
izability of a sphere to its interior dielectric. Since ε∞ and n
are macroscopic intensive quantities, their measurement
should not depend on the size of the studied sample, given
that it is large enough to exhibit a macroscopic behavior,
the worst case being the use of a single molecule. It is not
to say that Onsager’s uses of the Clausius-Mossoti equation
with the radius of a single molecule were not justified. In
fact, he was primarily interested in the molecular polariz-
ability (Rmol) and used the formula

where V is the volume of the liquid sphere considered, and
N the number of molecules it contains. In eq 17, the rightmost
factor corresponds to the cube of an effective single spherical
molecule radius. It is however understood that the same
molecular polarizability is obtained as long as the V/N factor
is preserved and is therefore size independent with the key
assumption that ε∞ is filling the space uniformly, i.e. that it
is a spatially averaged value. In order to calculate the
refractive indices for the general case where the internal
dielectric is not uniformly distributed in the liquid, we
generated pure liquid configurations from molecular dynam-
ics (MD) simulations at room temperature and cut out
spherical clusters (or droplets) from individual snapshots.
We maintained the V/N ratio by fixing the density to
experiment and calculating the droplet effective εin with the
formula

where Rdroplet and Rdroplet are the droplet radius and polariz-
ability. We assigned the dielectric function on all molecules
and applied the procedure outlined above to calculate the
droplet polarizability and thereby access the droplet refractive
index. Averaging the droplet refractive index over many
droplets yields an approximation of the bulk refractive index.

2.3.2. Computational Details. To obtain the liquid phase
droplets, molecular dynamic simulations, using the AMBER
8.0 package, were performed on 3375 molecules (15 × 15
× 15) in a cubic box. The NVT ensemble and periodic

boundary conditions allowed the density to be fixed to the
experimental value. The temperature was set to 20 °C to
match the experimental conditions used to report refractive
indices and maintained constant with the Berendsen’s weak
coupling algorithm32 with the kinetic energy adjusted every
1 ps. The short-range nonbonded interaction cutoff was set
to 8.0 Å, and long-range interactions computed with particle
mesh Ewald14,33 using the default Amber 8.0 setup. The mol-
ecules were charged with AM1-BCC,34,35 and the General-
ized Amber Force Field (GAFF)36 was used. The SHAKE
procedure37 was used to fix all bond lengths to hydrogen.

The initial liquid box was generated by positioning the
molecules on a cubic lattice, randomly oriented with the
Marsaglia38 quaternions method. The system was first
minimized until the root-mean-square (rms) of the gradient
is less than 0.1 kcal/mol/Å. This was followed by a 8 ps
annealing phase integrated by steps of 1 fs, during which
the nonbonding interactions were gradually turned on and
the temperature increased from 0 K to 40 K and decreased
to 0 K. The system was then heated over 20 ps up to 293.15
K with a 2 fs integration time step. Following a 1 ns
equilibration, 50 evenly spaced snapshots were written over
a 2 ns production run. Each of the liquid boxes for a given
molecule was then wrapped in the primary cell. A sphere
with a diameter set to 85% of the box length formed a liquid
droplet when picking all molecules with an atom lying inside
the sphere. The droplet radius was then determined by
considering the position of the outermost non-hydrogen
atoms. The precise definition of the radius is not unique,
and we have verified, for example, that using the experi-
mental density to calculate the radius of the corresponding
ideal sphere gives refractive indices within (0.01 of those
obtained by the chosen algorithm. Also, this model assumes
a perfectly spherical object, ignoring the dimples formed
because of the finite size of the spheres. The relatively large
size of the droplet and the averaging over 50 independent
configurations reduced the effect of this approximation.

The solution to Poisson’s equation in the presence of the
voltage clamp boundary conditions was obtained on a
rectangular grid sized to encompass the full droplet plus half
its radius on each side of the droplet. The target grid spacing
was set to be 0.5 Å. The smooth dielectric functions (eq 1),
fitted on the molecular polarizability tensors only, were
assigned together with the matching atomic polarization radii,
internal dielectric εin, and A parameter. The external dielectric
was always set to the vacuum value εext ) 1. The conver-
gence criteria for the ZapTk solver was based on the grid
energy and set to 0.0001 kT. This convergence criteria
required the assignment of atomic charges that we choose
to be (0.001e were randomly placed on half the atoms,
keeping an overall neutral system. Given the strength of the
external field applied, this was not perceptibly affecting the
answer.

2.4. Free Energy of Hydration. 2.4.1. Theory. Implicit
solvent models are commonly used to incorporate the effects
of solvation in molecular models as a mean field.39-43 These
models considerably reduce the computational burden needed
to sample the solvent configurational space when each atom
of the solvent are explicitly simulated. An important valida-

Rmol ) (nD
2 - 1
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4πN
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tion for solvation models comes from the experimental free
energy of hydration (∆Ghyd) that consists in the chemical
potential difference for the transfer of a solute from vacuum
to bulk solvent. The computational evaluation of ∆Ghyd is
separated into two processes. First, the nonpolar free energy
of hydration (∆Gnp) comes from the formation of the solute-
shaped cavity in the bulk solvent that causes a reorganization
of the solvent molecules and nonpolar interactions between
the solute and the solvent. Second, the electrostatic free
energy of hydration (∆Gelec) results from the electrostatic
work necessary to place the solute charge density in the
solute cavity, involving interactions between solute and
solvent charge densities and their response to one another.
This results in the equation

The long-standing use of implicit solvent to evaluate ∆Gelec

is based on a high continuum dielectric solvent region that
gets polarized by a static solute electric field. While the solute
cavity is traditionally formed with a molecular surface with
a discrete transition of the dielectric function at the
solute-solvent boundary, we chose a smooth boundary
transition as explained earlier. The solute cavity volume and

shape is determined by atomic radii. For a given set of
charges, atomic radii that are too small exaggerate the affinity
of the solute for water, while radii that are too large will
have the opposite effect. The calculation of ∆Gelec is normally
done with a nonpolarizable solute, or, if the cavity is assigned
a εin > 1, the very significant screening of the atomic partial
charges requires a special treatment that was not done until
recently.2 For nonpolarizable solutes, knowing that water
increases the dipole moment of solvated molecules often by
as much as 15%, the atomic charges should not be fit on a
gas phase QM ESP. For this reason, the charges are often
generated from RESP44 or AM1-BCC34,35 that are known
to be sufficiently overpolarized compared to the gas phase.

In the 3-zone dielectric model that we propose in this
article (cf. Figure 2a and eq 3), the first zone should
accurately account for the solute polarizability, which allows
for the use of vacuum phase atomic charges obtained taking
into account the internal dielectric function. The second zone
located between the internal dielectric and the solvent is set
to vacuum, and the transition to the full implicit solvent
model of the third zone needs to be parametrized. Following
the suggestion of Grant et al.18 for their nonpolarizable
2-zone dielectric function, we fixed the B parameter in eq 3

Table 1. Reported Optimal Polarization Radii (σin) and Atom Typing for the Four G1 Sets Defining the Internal Dielectric
(Eq 1)

radius (Å)

SMARTS23-25 typical functional groups G1-4a G1-9a G1-12a G1-24a

εin
b 4 9 12 24

Ab 10 5 10 4.19
H

[H] all H 0.83 0.65 0.55 0.52
C

[CX4] alkanes 0.78 0.79 0.67 0.62
[c,CX2,CX3] aromatic, sp, sp2 1.25 1.02 0.87 0.78

N
[n,NX1,NX3,$(Nc),$(NN)] aromatic, nitriles, sp3, aniline,

hydrazine,
1.09 0.89 0.76 0.69

0.74c

[$(N[C,S])*)] amides, amidines, sulfonamides 0.89 0.77 0.64 0.58
[$(N)C)] imine, amidine 1.07 0.93 0.81 0.76
[$([#7]∼[OX1])] N-oxides, nitro 0.00 0.79 0.68 0.59

O
[$([OX2]([H])[#6,#7]),o,$([OD2]([CX4,c])[CX4]),

$(O)[c,C,S])]
alcohols, furan, hydroxamic

acids, ethers, ketones,
aldehydes, amides, sulfones

0.88 0.73 0.63 0.60

[$(OC)[O,N])] esters, carboxylic acids 0.68 0.55 0.46 0.46
[$([OX1]∼[#7])] N-oxide, nitro 1.08 0.89 0.77 0.74

Others
[S,s] all sulfur atoms 1.44 1.22 1.06 1.01
[F] 0.77 0.62 0.53 0.51
[Cl] 1.30 1.09 0.95 0.91
[Br] 1.47 1.24 1.07 1.03

Water
special fit

[$([OX2]([H])[H]] 0.93 0.86 0.76 0.75
[$([H][OX2][H])] 0.64 0.45 0.36 0.31

Charged Atoms
[$([#1][#7+]),$([#1][#7][#6])[#7+][#1]),

$([#1][#7][#6])[#7+]),$([#1][n+]∼c∼n),
$([#1]n∼c∼[n+])]

proton in guanidiniums,
amidiniums, ammoniums,
pyridiniums

0.44 0.43 0.37 0.01

[$([O-]CdO),$(O)C[O-])] O in carboxylates 1.20 1.02 0.88 0.85
[$([NX4+]),$([#7+])C-N),$(N-C)[N+]))] N in ammoniums, guanidiniums,

amidiniums,
0.00 0.34 0.39 0.52

[$([n+]∼c∼n),$([n]∼c∼[n+])] N in imidazoliums 0.00 0.00 0.00 0.42

a Model name. b Parameter kept fixed during optimization. c Nitrile nitrogen radius made different for G1-24.

∆Ghyd ) ∆Gelec + ∆Gnp (19)
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to 11.8, which leaves the solvent cavity atomic radii to be
fitted on the experimental free energy of hydration. However,
in order to compare the calculated ∆Ghyd to experiment, we
needed to use existing values or methods for ∆Gnp. Fortu-
nately, converged molecular dynamics free energy45,46

calculations based on free energy perturbation (FEP) calcula-
tions are available for each compound from our hydration
free energy data set. We feel this is the best achievable
theoretical estimation of ∆Gnp, so this is our preferred
estimation in current study. However, since this is not very
useful for prospective evaluations of ∆Ghyd, due to the heavy
computational demands for such FEP calculations, we also
tested a surface area based model that calculates ∆Gnp as

where γ is a surface tension, and S is the surface area of the
molecule as defined by a solvent accessible surface17 created
with a 1.4 Å rolling probe and the Bondi radii.16 This crude
approximation has proven useful, and it can be improved
upon by atom typing the γ47 or by using some treatment of
the dispersion energy48-51 instead; however, in this work a
single value of γ was fitted for each model.

2.4.2. Computational Details. The atomic partial charges
responsible for the permanent electrostatic potential (ESP)
were determined by a least-squares-fit on the QM ESP
calculated on a face-centered-cubic grid of points. Following
Jakalian et al.,34 the grid spacing was set to 0.5 Å, and the
grid points were positioned around the molecule in a volume
formed by two vdW surfaces, each built with Bondi radii
scaled by a factor of 1.4 and 2.0. The dielectric scales down
by a factor of 1/εin the effect of the charges; this is partly
compensated by the bound charges appearing from the
internal polarization. Hence, the least-squares-fit requires a
Poisson solver in order to capture the overall effect, which
depends on the shape of the dielectric boundary. It is
noteworthy that the EPIC polarizability model is independent
of the charge fitting process; as a result, charges are fitted
after the solute dielectric parameters are optimized. The
details of the procedure, called DRESP, can be found
elsewhere.2

A finite difference Poisson solver was written to allow
the implementation of the 3-zone dielectric model. Here is
a brief description of the algorithms implemented. We use
successive over-relaxation (SOR) and a Gauss-Seidel iterative
scheme52,53 where the over-relaxation parameter w is esti-
mated by

where N is the number of grid points in one of the dimension
of the grid.52 This crude estimate of the spectral radius of
the A matrix in the finite difference form of the Poisson’s
equation used (see the Appendix of ref 18) was sufficient to
reduce by a factor of approximately 30 the number of Gauss-
Seidel steps necessary.

The free charges of the system were assigned on the grid
with a quadratic inverse interpolation scheme18 that has the
advantage of conserving the dipole moment, has a continuous
first derivative, and is more robust to the effects of rotation
and translation. The same interpolation rule is used to
calculate the potential in between grid points. In our
calculations, we use a convergence criteria base on grid
energy defined as the sum of the electrostatic potential times
the distributed free charges on the grid. This convenient
criterion is directly related to the energy in an absolute way
and thus ensures that relative energies are also converged.
The boundary conditions, in energy calculations, were
determined with a Coulomb potential.

The ∆Gelec was computed by taking the grid charge energy
difference between a solution obtained in vacuum (εext ) 1)
and another solution in water (εext ) 80) from the resulting
Poisson’s equation and calculated with

where qi is the atomic partial charge of atom i, and �(rbi)vacuum

is the interpolated electrostatic potential at atom i position
rbi. The grid spacing for the solver was set to 0.35 Å, and the
minimum distance between the solute internal radii and the
grid boundary was set to 7 Å. In those cases where the solute
was nonpolarizable, εin was set to one. Finally, the parameters
(solvent cavity atomic radii and surface tension) were
adjusted with the same Levenberg-Marquardt algorithm
used for the fit to the polarizability tensor. All parameters
were simultaneously optimized.

2.5. Quantum Calculations. The B3LYP exchange-
correlation functional54,55 was used for all DFT quantum
calculations of this work within the Gaussian 03 software.56

All molecular structures of this work were initially relaxed
with B3LYP and the 6-31++G(d,p) basis set.57-59 Property
calculations required larger basis sets for accuracy. The
electrostatic potential values were obtained with B3LYP and
the 6-311++G(3df,3pd) extended triple-� basis set.57-59 The
molecular polarizability tensor computations used the aug-
cc-pVTZ basis set,60 as it was shown to lead to accurate
results.61 The implemented method in Gaussian 03 to
calculate the molecular polarizability tensor is the Coupled
Perturbed Hartree-Fock (CPHF) method.62 The Hartree-Fock
calculations performed to fit water-adapted atomic partial
charges were also performed with the Gaussian 03 software
with the 6-31G(d,p) basis set.

3. Data Sets

In this work, we made extensive use of three kinds of data:
B3LYP/aug-cc-pVTZ polarizability tensors, free energies of
hydration, and refractive indices. A total of five data sets
were created.

3.1. Polarizability Training Data Set (PTD). A training
data set was used to optimize the internal radius in order to
match B3LYP polarizability tensors. To this end, we made
use of the previously published training data sets1 and added
new molecules for a total of 265 polarizability tensors. In
this data set, many neutral functional groups are represented:

∆Gnp ) γ × S (20)

w ) 2

1 + √1 - λmax
2

λmax ) 1 - π2
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1
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i

Atoms
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alkanes, alkenes, alkynes, halogens (bromo, fluoro, chloro),
alcohols, thiols, amines, ethers, thioethers, nitriles, aldehydes,
ketones, esters, thioesters, amides, acids, ureas, imines,
amidines, sulfones, sulfoxides, sulfonamides, heteroaromat-
ics, hydrazines, hydroxamic acids, N-oxides, pyridones, and
peptides. In addition, charged functional groups were also
included with the sole purpose of examining charged side
chains in amino acids. They were carboxylates, guanidini-
ums, imidazoliums, and ammoniums. The strength of the
polarizability training data set is in the wide coverage of
functional groups, but its weakness is the lack of polyfunc-
tional molecules. To get this level of coverage would require
calculations on a great many more larger molecules and
consequently an enormous amount of computational power.
The intention in this paper is to assess whether a small and
reasonably general first set of parameters can adequately treat
a wide variety of bioorganic small molecules in addition to
most biomolecules.

3.2. Polarizability Validation Data Set. The polarization
validation data set is composed of the previously published
validation sets1 and 401 molecules from the hydration free
energy data set (below) not included in the polarizability
training data set. In addition, a few special molecules such
as neutral and charged peptides, melamine, sugars, etc. were
added, giving a total of 442 molecules.

3.3. Polarizability Data Set. The polarizability data set
is the combination of the validation and training data sets,
making available all 707 polarizability tensors together with
the molecule coordinates (see the Supporting Information).

3.4. Hydration Free Energy Data Set. This data set is
built from a compilation of 504 experimental free energies
of hydration of neutral molecules recently published with
the corresponding ∆Gnp and ∆Gchg from Molecular Dynamics
based absolute free energy calculations.45 We took the
published data set, eliminated the iodine- and phosphorus-
containing compounds, and formed a data set of 485
molecules on which we could fit the solvent part of the
dielectric function (eq 3) and the surface tension coefficient
(γ).

3.5. Refractive Indices Data Set. The refractive indices
data set contains 23 small organic molecules (cf. Figure 5)
that are liquids at 20 °C, for which the density and the
refractive indices are taken from the CRC Handbook of
Chemistry and Physics.63 They span a variety of functional
groups, and most of the entire spectrum of refractive indices
measured for bioorganic molecules.

4. Results and Discussion

4.1. Polarizability Tensor. This work follows the pre-
cedent of ref 1 in fitting atomic polarization radii and a single
inner dielectric constant to QM molecular polarizability
tensors to produce an accurate EPIC model of electronic
polarization. This is done independently of the permanent
electrostatic potential; all atomic partial charges are therefore
set to zero. In this section, we generalize the parametrization
to account for most of the biomolecules and a significantly
wider spectrum of bioorganic functional groups. In contrast

to our previous work, we use a smooth dielectric function
as described earlier and a single internal dielectric (εin) value.

4.1.1. Choice of εin and A Parameters. It was previously
shown that a more accurate polarizable model was obtained
when different εin were fitted for alkanes and aromatics.
However, the single-εin model performed as well as the multi-
εin model and DFT against experimental directional polar-
izabilities. Furthermore, in another study2 that examined the
local electronic polarization, the same single-εin model was
only slightly worse than the multi-εin model. In this work
we pursue the single-εin model because it greatly simplified
the Poisson solver implementation and the robust param-
etrization for a wide spectrum of bioorganic chemistry.

Before the global parametrization of polarizability atomic
radii, a range-finding study was performed with a smaller
training set examining which combination of εin and A (cf.
eq 1) is best to use for extending the EPIC parametrization
previously initiated.1 We used a set of 13 alkanes (set g in
ref 1) including methane, propane, cyclopropane, butane (cis,
trans), hexane (cis, trans), and neopentane, together with a
set of 10 heteroaromatic molecules (set a in ref 1). We
formed the two-dimensional grid of εin and A pairs and
optimized four radii (hydrogen, alkane carbon, aromatic

Figure 3. The iso-contour plot of the RRMS error between
B3LYP/aug-cc-pVTZ and EPIC polarizability tensors are
shown as a function of the εin and A parameters of eq 1. This
RRMS surface was generated from a simultaneous fit of the
H, alkyl C, aromatic C, and aromatic N atomic polarization
radii on training set of 11 aromatic and 14 alkane molecules
against their B3LYP polarizabilities. It shows that in order for
a single dielectric model to fit the polarizabilities of these two
chemical classes to within 10% error, the εin needs to be
sufficiently large (>6). Deviations in the anisotropy of the
polarizability are the main source of error for lower values of
εin.
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carbon, and aromatic nitrogen) for each point of the grid.
The polarizability tensor RRMS deviation from QM for this

Figure 4. Correlation graph between the B3LYP/aug-cc-pVTZ
directional polarizabilities (R1 black circles, R2 red triangles,
and R3 green squares in au) for three G1 dielectric parameter
sets (cf. Table 1). Each figure shows the data for 707
molecules for a total of 2121 points. From these figures, it is
clear that a small number of parameters (optimized on 265
molecules) can generalize well. A large εin ) 24 (a) produces
the best fit, a medium range εin ) 12 produces slightly larger
discrepancies, and a small εin ) 4 produces significantly larger
deviations, in keeping with the results of the range-finding
study on the small data set.

Figure 5. The calculated refractive indices (n) of 23 organic
molecules are compared to experiment. Three dielectric parameter
sets are used a) G1-24, b) G1-12, and c) G1-4 (Table 1). For
each set, the preoptimized radii can be found in Table 1. The
reported refractive indices (n) were obtained by polarizing a liquid
droplet formed by carving spheres from periodic MD liquid simula-
tion snapshots. The Clausius-Mossoti equation leads to n2 ) ε∞

close to experiment, in spite of the large εin. The predicted values
are systematically higher than experiment, which can be explained
by potential artifacts or a polarizability shift when passing from
vacuum to condensed phase (see text). As with the polarizabilities,
the predictions deteriorate with decreasing εin, in keeping with the
results of the range-finding study on the small data set.
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data set at each (εin, A) pair is shown as an iso-contour plot
in Figure 3. It is clear that in order to fit a general dielectric
function, a sufficiently large εin is needed. Also, the flatness
of the error surface allows for multiple equivalent choices,
a potential advantage if other criteria become more stringent
in the development of the polarizable model. As shown by
red circles in Figure 3, four starting points were selected for
further examination: G1-24 (εin ) 24, A ) 4.188), G1-12
(εin ) 12, A ) 10), G1-9 (εin ) 9, A ) 5), and G1-4 (εin

) 4, A ) 10). In the case of G1-24 only, the A parameter
was relaxed to a value of 4.18. The G1-12 seems slightly
superior to the G1-9. Finally, while the G1-4 parameter
set showed the worst RRMS, it was still a good case for
having a small value of εin, identified by Tan and Luo13 as
being optimal. Each of the G1 εin and A choices was fixed
in the global parametrization of atomic polarization radii
described below. Finally, Figure 3 shows that making a poor
selection of (εin, A), in particular having εin < 6, cannot be
redeemed by adjusting either the radii or the A parameter.

4.1.2. The Optimized Polarization Radii. The parametri-
zation of the four G1 sets on the 265 molecules of the
polarizability training data set proceeded as described in
the Method section. The εin and A values were fixed,
and the atomic polarization radii σi were adjusted to
optimize the fit to the B3LYP polarizability tensors. The
atom typing of the radii was a primary concern, and we
aimed at minimizing the number of radii fitted to reduce
the fitting complexity, ensuring a better generalization of
the chemistry. Each nonsymmetric molecule produced 6
data points from their polarizability tensor; structurally
symmetric molecules produced fewer data points. The
number of fitted parameters was kept small compared to
the number of associated data points to prevent overfitting.
The determination of the atom typing was done iteratively
by hand: first, the polarizability training data set was
designed in terms of chemical functional-group classes.
Adjustable parameters were added gradually with new
molecules having unmet chemical functionalities. Often,
the addition of a new chemical functionality class led to
one or two additional parameters. We also merged atom
types when the radii values were similar and the fitness
metrics (�2, δaVg, and δaniso) were not significantly affected.
For example, the alkane H and C radii were the first to
be fitted. This was followed by aromatic C, H, and N. It
was determined early that a single aromatic and alkyl atom
type for C and H could be utilized. Then the alcohol
oxygen radius, halogen radii, alkene carbon, and alkyne
carbon radii were individually fitted. The final stage was
a global simultaneous fit of all radii with the entire
polarizability training data set. Because of its special
importance as a solvent, water was treated separately with
its own special O and H radii.

The resulting polarization radii are given in Table 1 for
the four G1 parameter sets. The ordering of atom types in
Table 1 is important since the atom typing was done in
sequence from top to bottom to deal with the issue of a
particular atom falling in more than one category (H for
instance). The first observation is that all polarization radii
are significantly smaller than vdW contact radii such as

Bondi,16Pauling,64orParse40oftenusedinPoisson-Boltzmann
approaches. This finding unveils the two different natures
of the physical phenomena described. On the one hand, the
polarization radii aim at calibrating how the electrons polarize
in reaction to an external field created, for example, by an
interacting molecule. On the other hand the vdW radii
determine the position of the repulsive molecular wall toward
other molecules. It is also expected that the larger the εin,
the smaller will be the radii: to maintain the overall
polarization the dielectric must increase as the radii decrease.
This is illustrating a general feature of the model that
produces larger polarizabilities when either the ‘electronic
volume’, decided by the radii, or the internal dielectric
increase. The sort of relationship involved is given in eq 5
above for a hard sphere and elsewhere for a diatomic.1

It is also interesting to compare polarization radii between
elements and between the different chemical environments.
First, it is remarkable that the diverse carbon atom contexts
can be covered by only two atom types: sp3 and others. The
smaller sp3 carbon radius implies that carbon makes a much
smaller contribution to the overall polarizability when sp3

hybridized than when pi electrons are involved, i.e. in the
sp or sp2 hybridization states. This can be rationalized by
the presence of π* molecular orbitals, the different number
of connected H atoms, and the difference in the molecule
shape and the related anisotropy.

The nitrogen atoms were subdivided into four atom types
among which two encompass almost all instances in the data
sets. The first of these is a general nitrogen type assigned to
amines, nitriles, hydrazines, or anilines for example. The
smaller second major nitrogen radius makes amide, amidine,
or sulfonamide nitrogen less polarizable. Surprisingly, the
more specific nitro and N-oxide nitrogen radius, in the G1-4
set, has a radius of zero. The dielectric on this nitrogen atom
is only slightly smaller than εin because of the large bound
oxygen radii and the short N-O bond, typically 1.2 Å, which
allows dielectric from the oxygen to spread over onto the
nitrogen. It is also interesting to note that in the G1-24 set,
there was a gain in accuracy when the nitrile nitrogen had
its own radius.

The oxygen atom behavior can mainly be accounted for
by two adjustable radii types, which was a significant
advantage in the fitting processsthe N-oxide and nitro
functional groups still being an exception. Another interesting
result is the large radius of the sulfur atom that is comparable
to the bromine radius. However, it is not to say that
the polarizability contribution of sulfur is equivalent. In fact,
the bromine bonds are longer and hence offer a larger
polarizable volume. This argument is also useful to explain
why the fluorine radius is smaller than the hydrogen radius.
For example, the model predicts a polarizability for tet-
rafluoromethane of 18 au compared to 17 au for methane
and a polarizability of 76 au for hexafluorobenzene compared
to 70 for benzene, all in close agreement with B3LYP.
Because of water’s special importance as a solvent, both the
oxygen radius and the hydrogen radius were optimized to
exactly match the B3LYP polarizability tensor. These various
behaviors of the atomic polarization radii underscore their
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difference in nature and purpose from vdW contact radii,
which is why they must be treated differently.

Finally, charged species pose a special challenge that we
decided to address specifically for charged side chains in
proteins: Arg, Lys, Asp, Glu, and His. Further generalization
of the radii for charged species while retaining the same level
of accuracy in the polarization tensor would require a more
extensive parametrization. One reason for this is the expected
reduction in polarizability on the neighbor atoms through
the strong induction caused by the charged site. On the other
hand, the electrostatic interactions around charged centers
will be dominated by the monopole (i.e., the distribution of
the charge itself), so high accuracy in the effects of
polarization may become less important than with neutral
species.

4.1.3. Polarizability Tensors. The G1 parametrizations
clearly showed the capacity of EPIC to produce accurate
polarizabilities with a minimum of atom types. The choice
of εin and A combinations made based on the very small
range-finding subset showed the same behavior in the
polarizability training data set, the polarizability validation
data set, and their combination (polarizability data set), made
of 265, 442, and 707 molecules, respectively. Table 2, which
summarizes the errors, shows the accuracy of the obtained
models. The G1-24 data set has an unsigned average error
of 2% on the average polarizability (eq 13) and a 5% error
on the anisotropy of the tensor (eq 14). With the point
inducible dipole polarizable models, such a low level of error
was obtained only when anisotropic atomic polarizabilities
were fitted,5,15,65-67 making their generalization very chal-
lenging. The other G1 models are worse, and as predicted
from the range-finding study results shown in Figure 3, the
G1-4 set is inadequate to reproduce the directional differ-
ence in the polarizability (the large δaniso values in Table 2).
That the error obtained on both the training data set and the
validation data set was similar indicates that our radii are
not overfit. Finally, the three directional polarizabilities
(eigenvalues of the tensor) obtained for the 707 molecules
(2121 data points) are compared to the corresponding B3LYP

values in Figure 4 for three representative G1 sets. The
excellent correlation is obvious for the G1-24 and G1-12
and deteriorates in the G1-4 EPIC model (the Pearson
correlation coefficients are 0.99, 0.99, 0.96 and the slopes
0.97, 1.02, and 1.20, respectively). An apparent outlier is
the R3 (longitudinal polarizability) of (3E)-hexa-1,3,5-triene
for which B3LYP gives a value of 176 au compared to the
EPIC value of 125 au. For this specific molecule, Sekino et
al.68 showed that B3LYP greatly overestimates the R3 value
of acetylene chains. Their better estimate, based on very
accurate CCSD and MP2 QM results, predicts a value of
∼135 au, close to the EPIC value. Another remarkable
discrepancy between EPIC and B3LYP is observed in Figure
4 for the R3 of 1,4-dioxidopyrazine (doubly oxidized nitrogen
on pyrazine) that is predicted to be 103 au by the G1-12
model versus 129 au by B3LYP. A similar observation can
be made for 4-nitroaniline. Although we have not found
better estimates for these molecules, they most certainly
constitute a challenge both for classical and ab initio
polarizability calculations.

4.2. Refractive Indices. In the previous subsection, we
have developed dielectric functions that predict remarkably
well, relative to QM, the polarizabilities of a single molecule
in the gas phase. In this section we present the macroscopic
refractive index calculations and the corresponding effective
high frequency limit dielectric (ε∞). In a previous publica-
tion,1 we proposed that the vacuum of the intermolecular
spacing may be sufficient to reduce the effective macroscopic
ε∞ resulting from the high intramolecular εin obtained in the
optimization to polarizability tensors. Here we use a theoreti-
cal approach to verify this hypothesis. Another important
point addressed by the refractive index calculation is the
transferability of the dielectric function from the gas phase
to the condensed phase.

As explained in further detail in the Theory and Method
sections, we form liquid droplets containing thousands of
molecules from snapshots obtained by MD simulations and
calculate the effective ε∞ by the use of the Clausius-Mossoti
equation. The small range spanned by experimental refractive
indices makes this test somewhat stringent. Figure 5 shows
the correlation between the results obtained with three
representative EPIC parametrizations and experiment; G1-9
is omitted here and for the remainder of the article because
the results are so similar to those of G1-12. The first
observation is the close agreement between the magnitudes
of the ε∞ values. This clearly demonstrates that the effective
ε∞ of the liquid droplets have the appropriate value in spite
of the high εin, confirming our hypothesis. Figure 6 provides
a visual explanation for the apparent mismatch between the
low effective ε∞ compared to the high εin. This figure shows
the molecular dielectric inside a CCl4 droplet when it is sliced
through its center. The G1-24, G1-12, and G1-4 models
have a quite variable low-dielectric intermolecular space. The
coloring scheme of the dielectric function (eq 1) assigns red
when ε(r) ) εin and dark blue when ε(r) ) 1. The low
dielectric intermolecular space increases with εin as the
atomic radii decrease. It is striking that these three param-
etrizations produce the same refractive index and the same
molecular polarizability in spite of the very different εin. If

Table 2. Error Obtained with the Optimized Polarization
Radii of the G1 Sets When EPIC Molecular Polarizability
Tensors Are Compared to B3LYP for Different Molecule
Data Sets

modela δavg
b (%) δaniso

b (%) RRMSb (%)

Polarizability Training Data Set: 265 Molecules
G1-4 5.0 20.9 12.7
G1-9 3.2 9.1 6.7
G1-12 2.9 5.3 5.0
G1-24 2.3 5.2 4.4

Polarizability Validation Data Set: 442 Molecules
G1-4 4.0 18.2 12.3
G1-9 2.7 7.6 6.7
G1-12 2.6 5.1 5.3
G1-24 2.1 5.4 4.6

Polarizability Data Set: 707 Molecules
G1-4 4.4 19.2 12.4
G1-9 2.9 8.2 6.7
G1-12 2.7 5.2 5.2
G1-24 2.2 5.4 4.6

a Model using the parameters given in Table 1. b Cf. section
2.2.3.
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εin is further reduced below 4, the whole droplet will become
filled with a uniform dielectric (as the atomic radii increase
and start to overlap), and the simultaneous prediction of
the molecular polarizability and the refractive index will
become compromised.

Also noticeable in Figure 5 is that the correlation with
experiment follows the previous assessment of the models
based on molecular polarizabilities: the G1-24 parametriza-

tion (Figure 5a) has a R ) 0.95, slightly better than the
G1-12 (Figure 5b) with R ) 0.94, which is in turn
significantly better than the G1-4 correlation with R ) 0.86
(Figure 5c). However, Figure 5 shows a 0.05 systematic
overestimation of the refractive indices in all cases which
could correspond to a small overpolarization, a result not
reflected in the gas-phase polarization tensors. The source
for this deviation is not clear, but we have several hypotheses.
First, the Clausius-Mossoti equation is valid for a perfect
sphere, whereas we are dealing with an imperfect surface
created by nanoscopic droplets. Second, we have verified
that an underestimation of the droplet radius by only 3-4%
(1 Å in a range of 25-35 Å) could systematically shift the
calculated refractive indices by 0.05. Third, it is also possible
that the liquid phase polarizability may be truly smaller than
the predicted gas phase polarizability since a drop of 11%
of the polarizability could explain the 0.05 shift. This would
be in agreement with other studies that found similar
phenomena8,11,69 and based their reasoning on the increased
Pauli exchange repulsion from the closer contact of the
molecules in condensed phase. However, the magnitude of
this effect differs considerably from study to study.

4.3. Hydration Free Energies. The calculation of hydra-
tion free energies is aimed at assessing whether the dielectric
polarization model capable of accurately reproducing gas-
phase polarizability tensors can be used “as is” in implicit
solvent calculations. Because of the difference in nature and
behavior between the atomic polarization radii and the atomic
cavity radii used for the solute-solvent boundary, the 3-zone
dielectric model is required. The hydration free energies were
calculated with the G1-24, G1-12, and G1-4 polarizability
models found in Table 3. For each polarizability model,
charges were fitted to the vacuum-phase QM ESP as
described in section 2.4.2; thus neither the various G1
molecular polarizability parameters nor the atomic charges
used for the hydration calculations have been influenced by
any effects of solvent. As discussed in ref 2, the high internal
dielectric screening of the G1 polarizability causes the
DRESP fitted charges to be of markedly higher magnitudes
than if they were fitted using an internal dielectric of 1. By
the same token, the differences between the various G1
models also result in different charges for each model. A
comparison of the resulting G1-24, G1-12, and G1-4
charges for several example molecules and the G1-12
charges for the entire hydration data set are given in the
Supporting Information. With the atomic charges in hand,
each of the solute models was then used to optimize the
solvent cavity atomic radii (referred to as cavity radii and
noted G2 in what follows) referred to in the second Gaussian
summation in eq 3. Each set of cavity radii is thus associated
with a given charge set and molecular polarizability set, for
example G2-12 is the set of cavity radii associated with
the G1-12 molecular polarizability parameters and the
charge set fitted using the G1-12 parameters. We decided
to set B ) 11.8 in all calculations, following the Grant et
al.18 suggestion as it was found to make the Bondi radii16

optimally reproduce the hard dielectric boundary results with
the same smooth boundary as used in this work. The results
reported in Table 3 are split into two main categories based

Figure 6. One of the 50 CCl4 droplets is cut in its center,
and three dielectric functions (eq 1) are plotted: a) G1-24 b)
G1-12, and c) G1-4. The red color is associated with ε(r) )
εin and blue with ε(r) ) 1.
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on the method used to approximate ∆Gnp. The surface area
(SA) based method follows eq 20 and required the optimiza-
tion of the surface tension parameter (γ). The main effort
here is however concentrated with the use of ∆Gnp by
converged free energy perturbation (FEP) calculations.45,46

This is the first category of results that we examine below.
4.3.1. Results with FEP-Based Nonpolar Term. Two main

classes of solute are studied as reported in Table 3. First,
we set εin ) εtrans ) 1 in eq 3, effectively turning eq 3 into
a conventional 2-zone dielectric function with a nonpolar-
izable solute as defined previously by Grant et al.18 For the
nonpolarizable solute model, we used static atomic charges
as given by ESP-fitting to the conventional overpolarized
HF-6-31G(d,p) wave function (G2-HF). These charge sets
are positive controls, following the traditional approaches
for nonpolarizable force fields and which have been shown
to produce the right degree of static polarization of the solute
in water.70 The G2-εin, with εin ) 4, 12, and 24 (cf. Table 1),
has polarizable solutes assigned charges fitted to the B3LYP/
6-311++G(3df,3pd) ESP known to reproduce the gas-phase
dipole moment of the molecules, being usually between 10%
and 20% smaller than what is normally expected in water.

We look for the polarizability to compensate for the use of
gas-phase charges.

It is quite interesting to observe in Table 3 that by allowing
the cavity radii to optimize in each model, the same level of
error over the 485 experimental free energies of hydration
is obtained for the G2-HF, G2-4, G2-12, and G2-24 solute
models. The average unsigned error (AUE) compared to
experiment is 1 kcal/mol with a standard deviation of 1 kcal/
mol. The Pearson correlation coefficient (R) is around 0.89
in all these G2 models. The relative root-mean-square
deviation (RRMS) obtained is 0.35, and the average signed
error (AE) is found to be between -0.15 kcal/mol and -0.18
kcal/mol. These errors can be compared to the Rizzo et al.47

results, on almost the same data set (460 neutral molecules
included in the 485 that we use), that produce an AUE of
1.47 kcal/mol with RESP charges and R ) 0.88. The reported
numbers of Rizzo et al. were obtained with a SA evaluation
of ∆Gnp that allow them to subsequently optimize 14 atom
typed surface tensions (γ), which improved the AUE to 1
kcal/mol while R ) 0.89. For comparison, in the current
study, we fit 8 atomic radii. In addition, the recent work of
Mobley et al.46 using Bondi radii and the single γ fitted by
Rizzo et al. on an almost identical data set to ours obtained
a root-mean-square deviation of 2.05 kcal/mol. Finally, in a
different article, Mobley et al.45 obtained a rms of 1.26 kcal/
mol and R ) 0.89 with explicit-solvent converged FEP
calculations. The FEP based ∆Gnp used in this work comes
from this latter study. Our results are comparable or better
to most other studies. We attribute the small errors to the
optimization of the radii, not necessarily to the quality of
the solute model. We can however examine the fitted cavity
radii with the different solute models to understand the effects
of the electrostatic model on the solute cavity size.

The level of solute polarization brought by the polarizable
solute models (G2-4 to G2-24) seems similar to what is
obtained with the G2-HF solute model. This can be assessed
by comparing the atomic radii and the cross-validation error
showed in Table 4 where the G1-12 solute model is used
with the different G2 radii sets. The level of error produced
when εin ) 4, 12, and 24 or with the G2-HF cavity radii is
similar, the G2-4 being the worst. The cross-validation
results of Table 4 also show the transferability of the third
zone dielectric parameters given that the solute has the
physically appropriate electrostatic behavior. A possible
advantage of the polarizable solute model is when the
solvation free energies are computed relative to a solvent
much less polar than water (e.g., a nonpolar solvent or a

Table 3. Solvent Cavity Atomic Radii (σcavity) and γ for the
3-Zone Dielectric Model Optimized on 485 Experimental
Free Energy of Hydration with Different G1-n Solute
Models and ∆Gnp Sources

modela

G2-HF G2-4 G2-12 G2-24 G2-12SA

solute
chargesb HFc B3LYPd B3LYPd B3LYPd B3LYPd

εin
e 1 4 12 24 12

Ae 10 10 4.19 10
ref. Table 1 G1-4 G1-12 G1-24 G1-12
∆Gnp FEPf FEP FEP FEP SAg

B 11.8 11.8 11.8 11.8 11.8
optimized implicit solvent parameters Bondi

Hh 0.98 0.95 0.97 1.02 0.98 1.20
C 1.95 2.03 2.02 1.95 2.01 1.70
N 1.74 1.74 1.74 1.68 1.69 1.55
O 1.81 1.79 1.78 1.75 1.75 1.52
S 2.60 2.27 2.29 2.33 2.41 1.80
F 2.09 2.09 2.08 2.05 2.49 1.47
Cl 2.38 2.36 2.47 2.41 2.46 1.75
Br 2.18 2.23 2.46 2.45 2.63 1.85
γi 6.8
AUEj 1.06 0.99 1.04 1.08 1.13
Stdevk 1.00 0.96 0.99 1.00 0.90
rmsl 1.45 1.38 1.44 1.47 1.45
Rm 0.89 0.90 0.90 0.89 0.88
RRMSn 0.34 0.33 0.34 0.35 0.34
AEo -0.18 -0.17 -0.17 -0.17 0.02

a Tag names for each of the optimized solvent cavity radii.
b Atomic partial charges from an ESP-fit or a DRESP fit on the
given quantum method. c Prepolarized charges from
HF/6-31G(d,p). d Vacuum charges from B3LYP/6-311++G-
(3df,3pd). e A and εin of eq 3 for the solute internal dielectric. The
atomic radii used in the internal dielectric are given in Table 1.
f ∆Gnp from free energy perturbation.45 g ∆Gnp calculated using the
surface area (eq 20) with the γ term optimized. h Cavity atomic
radii are given in angstrom. i Nonpolar surface tension from eq 20
in cal/Å2. j Average unsigned error in kcal/mol. k Standard
deviation of the unsigned error. l Root-mean-square deviation in
kcal/mol. m Pearson correlation coefficient. n Relative
root-mean-square deviation. o Average signed error in kcal/mol:
experiment - calculated.

Table 4. Effects of Using a Different Solvent Cavity Radii
Set (Table 3) with the G1-12 Solute Model (Table 1) on
∆Ghyd

G2-12 G2-24 G2-4 G2-HF

AUEa 1.04 1.08 1.17 1.10
Stdevb 0.99 1.03 1.19 1.01
Rc 0.90 0.90 0.86 0.89
RRMSd 0.34 0.35 0.39 0.35
AEe -0.17 0.16 -0.23 0.15

a Average unsigned error in kcal/mol. b Standard deviation on
the AUE in kcal/mol. c Pearson correlation coefficient. d Relative
root-mean-square deviation. e Average signed error in kcal/mol:
experiment - calculated.
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nonpolar binding site in a protein). In this case, the HF based
charges may not be appropriate.71

The fitted radii of Table 3 are significantly different from
the contact Bondi radii reported in the last column. First,
the H radius is a little smaller than the usual 1.1 Å contact
radius in all cases (the Bondi radius of 1.2 Å for H was
recognized to be a little too large and was revised to be 1.1
Å72). The carbon radius obtained here is much larger than
the Bondi radius and makes the C-H bonds behave like a
united atom model. In this perspective the carbon radius size
obtained here is similar to the Nina et al.73 carbon radius
they calculated by looking at MD water charge density in
explicit solvent simulations. For the other elements, we also
find larger radii than Bondi, in agreement with a recent study
by Nicholls et al.31

The larger cavity radii can be rationalized by considering
the difference between contact radii (Bondi) and the cavity
radii needed in implicit solvent calculations. The former is
defined by crystal contacts between neighboring molecules,
and the latter is defined by where the mean solvent charge
density begins. In terms of the 3-zone dielectric model, the
contact radii would be located in the middle of the second
zone where the electronic density should be minimal given
that the dielectric goes to one (no electrons to be polarized
on the solute side). This is supported by the fact that Fermi
repulsion between the solvent molecule electrons and the
solute electrons reduces the total electronic density to its
minimum exactly in the contact zone. In Figure 2a, the
contact radius of an aromatic carbon atom would become
1.7 Å, exactly the Bondi radius value. Similarly the middle
of the blue area in Figure 2b defines the contact line between
solvent molecules and the solute.

Although we claim here that having cavity radii larger than
Bondi radii may be physically motivated, it is not possible
at this stage to know if this effect should be as large as we
find. In particular, the fluorine radii in Table 3 are surpris-
ingly large. This was also found by Nicholls et al.31 where
their optimal fluorine radius was 2.4 Å. Knowing that fluorine
is particularly hydrophobic, this may be just another peculiar
behavior of this atom. The Cl and Br radii difference in the
G2-4, G2-12, and G2-24 sets uncover a drawback of using
a small εin. Because the polarization radius of Cl and Br are
larger in the G1-4 than in the other EPIC parametrizations,
the transition zone shown in Figure 2 cannot reach ε(r) ) 1
(in the case of Br, it only decreases to ε(r) ) 3), and as a
result the full polarizability coming from the halogen atom
is not reached as the solvent cuts into the first zone dielectric
function. This prevents enough solute bound charge density
from building up.

A last point to mention in regard to the 3-zone dielectric
function is its potential advantage in reducing the occurrence
of the reentrant surface problem that often brings a lot of
fluctuation in energy or force computations in proteins, for
instance. The problem is the artificial formation of a cavity
with high dielectric inside a protein due to the irregularity
of molecular surfaces. The large size of the atomic cavity
radii in the G2 sets and the use of a smooth dielectric function
should contribute to create a sufficiently deep buffer of low
dielectric and make implicit solvent models more stable.

Indeed, the smoothness of the surface around 4-pyridone
observed in Figure 2b looks like a solvent accessible
surface.17 This entire question is however left for future
research.

4.3.2. Results with the Surface Area-Based Nonpolar
Term. Although the use of the very computationally intense
FEP-based ∆Gnp may be better physically grounded, the
obtained models cannot practically be used in a prospective
manner due to the heavy computational demands for such
FEP calculations. For this reason, we also optimized the
cavity radii and the surface tension with the G1-12 solute
models. In these calculations the solvent accessible surface
area was calculated with the Bondi radii and kept constant.
The results are reported in Table 3. The error levels reported
are comparable to those obtained with ∆Gnp from FEP
calculation. The G2-12/SA model gives error levels a little
larger than the G2-12: AUE ) 1.13 kcal/mol with a standard
deviation of 0.90 kcal/mol, R ) 0.88, RRMS ) 0.34, rms
) 1.45 kcal/mol, and AE ) 0.02 kcal/mol. The radii obtained
for the G2-12/SA fit are similar to the G2-12 fit except
for S, F, Cl, and Br. It is possible that the hydrophobicity of
these atoms is overestimated by the single surface tension
term used with the Bondi radii to determined ∆Gnp.

5. Conclusions

The EPIC approach to molecular polarizability has been
parametrized to include many more chemical functional
groups than the previous effort.1 This required generating a
data set of 707 B3LYP/aug-cc-pVTZ molecular polarizability
tensors. The ability of EPIC to account for both the average
polarizability and the anisotropy of the tensor was remarkable
given that the optimization of only 14 parameters (excluding
water and charged species) led to a relative unsigned error
in the average polarizability and anistropy of 2.6% and 5.2%,
respectively (G1-12). An example of the parsimony of the
atom typing is that a single radius parameter was sufficient
for aromatic, nitrile, amine, aniline, or hydrazine types of
nitrogen. Obtaining the same level of error with both the
validation and training data sets suggests that overfitting is
not an issue. With previous polarizable models, such as point-
inducible dipoles, this level of accuracy could only be
attained with added complexity such as anisotropic polariz-
able centers or molecule-specific Thole screening para-
meters.5,15,28,65-67

We found that the anisotropy could only be reproduced
accurately if the interior dielectric constant was higher than
9.0. Above this value, almost any interior dielectric can also
work well as long as the atomic polarization radii are
appropriately adjusted. The need for a high interior dielectric
raised the question of the physical soundness of the model
as εin ) ε∞ ) n2 has become a dogma in the implicit solvent
literature13,30,31,39,40,74-76 whenever the dielectric constant
is used to replace electronic response. The conceptual flaw
of this equality comes from the fact that the interior dielectric
(εin) is not uniformly distributed, whereas the refractive index
(n) comes from a macroscopic measurement assuming a
uniform ε∞ in space. To verify that the optimized models
agree with experimental refractive indices, we devised a new
protocol to calculate a liquid refractive index from micro-
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scopic simulations. To this end, 23 organic molecules
spanning the entire range of bioorganic-molecule-like refrac-
tive indices state were simulated by molecular dynamics in
the liquid state and ε∞ was calculated with the Clausius-
Mossoti relation. The obtained refractive indices now come
from the effective polarization of liquid configurations having
intramolecular high dielectric with low-dielectric interstices.
The results show a good correlation for all three G1-εin

parameter sets. The highest interior dielectric (εin ) 24) gave
the best correlation with a slope of 1.00, an intercept of 0.05,
and a correlation coefficient of 0.95. It is interesting to note
that the polarizability anisotropy may play a role since the
G1-4 parameters (εin ) 4) gave the poorest correlation and
was also the worst model for polarizability anisotropy. These
results indicate that, when coupled with the appropriate radii,
many choices of high εin can give results in good agreement
with the experimental refractive indices.

To use the EPIC polarizable electrostatic model with
implicit solvent, we have developed a smoothed-boundary
3-zone dielectric function that works with the internal
dielectric continuum model. The three zones are the
internal dielectric constant εin, a transition zone that tends
to the vacuum dielectric (εtrans ) 1), and a third zone
defined by the molecular cavity boundary, where the
dielectric function reaches the bulk liquid dielectric. With
this function, keeping the first zone fixed at the atomic
polarization radii and εin determined for the gas phase
polarizabilities, only the molecular cavity boundary needs
to be parametrized. A data set of 485 experimental free
energy of hydration was used to optimize the solvent
cavity radii, one per element, with different charge models.
The resulting level of error was smaller than found in
previous implicit solvent studies with a typical average
unsigned error of 1 kcal/mol, a standard deviation of about
1 kcal/mol, and a Pearson correlation coefficient of 0.9.
Atomic charge sets fitted from the unpolarized gas phase
B3LYP QM ESP coupled with EPIC polarization led to
cavity radii comparable to those obtained with the polar-
condensed-phase-like HF/6-31G(d,p) charges. The low
sensitivity of the optimal cavity radii resulting from the
fit with different polarizable solutes (the different G1-εin)
further supports the generality of the approach. These
results clearly show that EPIC can lead to accurate
description of solute polarization in implicit solvent. The
anisotropy of the molecular polarizability does not seem
to play an important role in fitting experimental hydration
free energies. However, when considering intermolecular
interactions, such as in an enzyme active site, the
heterogeneity of the environment and of the interactions
may require an accurate directional polarizability. An
important example of this is in cation-π interactions2,77

The proposed global optimization scheme involves several
independent layers. The polarizability part is fitted on
uncharged QM molecular polarizability tensors. The charges
are added with the DRESP fit on ab initio electrostatic
potentials calculated on a grid, as usual, except that here the
QM method can be systematically improved since gas phase
properties are needed. For implicit solvation, solvent-related
radii are obtained from a fit to experimental hydration free

energies. Flexibility and transferability have been demon-
strated for each stage. The ease with which we could fit the
polarizability of so many functional groups leads us to
believe that the further extension of the parametrization and
atom typing should be straightforward given more data.
Moreover, the decoupling of the fitted polarization from the
fitted charges as well as the physical soundness of each step
makes the above parametrization scheme even more robust
and general than is possible for two-body additive force
fields.

This work partly addresses the question of applicability
of EPIC in polar condensed phase. The calculations of the
refractive indices were well behaved and show the high
values for εin are not unphysical. It is not clear if the slightly
larger calculated polarizabilities of the droplets were due to
a change in polarizability when going from gas phase to
condensed phase. Also, the level of electronic induction seen
in the 3-zone implicit solvent calculations suggests that both
solute and solvent polarization in polar media is well
modeled. To confirm those findings, it would be interesting
to perform explicit atoms simulations with the EPIC model
and Poisson’s equation.

The EPIC approach to polarizability has shown unprec-
edented accuracy and flexibility on many accounts for such
a simple model. Although the optimized parameters are
unconventional compared to traditional Poisson-Boltzmann
applications, it is for sound physical reasons that even clarify
aspects of the implicit solvent approaches. In this paper and
the two previous ones,1,2 EPIC was shown to be a powerful
tool to include the effects of electronic polarization in
molecular mechanics type calculations, especially appropriate
to biomolecular force fields.
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Abstract: We have developed a new united-atom set of lipid force field parameters for
dipalmitoylphosphatidylcholine (DPPC) lipid bilayers that can be combined with the all-atom
optimized potentials for liquid simulations (OPLS-AA) protein force field. For this, all torsions
have been refitted for a nonbonded 1-4 scale factor of 0.5, which is the standard in OPLS-AA.
Improved van der Waals parameters have been obtained for the acyl lipid tails by matching
simulation results of bulk pentadecane against recently improved experimental measurements.
The charge set has been adjusted from previous lipid force fields to allow for an identical
treatment of the alkoxy ester groups. This reduces the amount of parameters required for the
model. Simulation of DPPC bilayers in the tension-free NPT ensemble at 50 °C gives the correct
area per lipid of 62.9 ( 0.1 Å2, which compares well with the recently refined experimental
value of 63.0 Å2. Electron density profiles and deuterium order parameters are similarly well
reproduced. The new parameters will allow for improved simulation results in microsecond scale
peptide partitioning simulations, which have proved problematic with prior parametrizations.

I. Introduction

In recent years computer simulations of proteins embedded
in lipid bilayers have become a powerful tool to investigate
this important class of proteins in its native environment.
Advances in computer architecture now in principle allow
classical all-atom molecular dynamics (MD) simulations of
membrane proteins on the microsecond time scale, and much
longer with coarse-grain models (see the recent review by
Lindahl and Sansom).1 This opens the possibility to directly
observe the conformational transitions involved in protein
function, such as gating and signaling. In addition, simulation
time scales are now sufficient to study at atomic resolution
the adsorption, folding, insertion, and self-assembly of many
membrane-bound peptides, such as antimicrobials, viral
channel formers, and synthetic peptides.2-8 However, with
the increased time scale of the simulations, there is a growing
need to address deficiencies in the underlying models. At

the time of their design most protein, water, and lipid force
fields could not be tested beyond the picosecond to nano-
second range.9 Especially tricky is the description of the
membrane itself (i.e., the lipid force field) and the delicate
balance of protein and lipid parameters. If such interactions
are not well tuned, simulations can lead to results that are
irreconcilable with experimental evidence and theoretical
estimates: For example, in partitioning simulations of small
hydrophobic peptides into lipid bilayers, unfolded conforma-
tions were buried in the hydrophobic core,3 or were found
to be favored over the expected transmembrane helix.2,10

Such problems are most visible at slightly elevated temper-
atures where sampling is increased and for small peptides,
where lipid-protein interactions dominate. For larger mul-
tispan membrane proteins, the protein-protein interactions
are much stronger, making these problems difficult to detect
at the time scales currently accessible. Indeed, because
multiple helices are usually tightly locked through strong
contacts of interdigitating hydrophobic side chains, it is in
practice quite difficult to unfold membrane proteins in
computer simulations. However, while the transmembrane
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part of the protein usually remains rigid, the subtle force
field imbalances can manifest themselves in perturbations
of the flexible parts such as extramembranous loop regions,
leading to incorrect conclusions about the flexibility or
function from simulation data.

Accurate and reliable lipid parameters are therefore of the
utmost importance to derive meaningful data from computer
simulations of membrane proteins. There are several lipid
parameter sets in regular use for bilayer simulations, such
as the all-atom (AA) CHARMM lipids,11,12 including united-
atom (UA) adaptations13 and modifications.14,15 Common
UA models are the Berger16 and GROMOS17 lipid models.
Other recent efforts have been based on the generalized
AMBER force field18,19 or polarizable models.20 An excellent
summary on the topic of lipid force field development has
also been published recently.21

A troubling problem of several of these lipid force fields
is the inability of simulated bilayers to sustain the fluid (LR)
phase area per lipid in the NPT ensemble. Instead, a dramatic
lateral contraction is observed, either resulting in a bilayer
that is too densely packed or even causing a transition into
the ordered gel phase.22 To compensate, a positive surface
tension can be applied.23 Finite size effects have been put
forward as an explanation, yet other studies find only a small
dependence of the area per lipid on the system size, especially
if long-range electrostatic corrections are taken into ac-
count.24 It seems the only significant finite size effect is on
the lateral diffusion of the lipids, but not on structural
properties.25 Instead of a surface tension, another way to
obtain the correct area per lipid is to simply fix the total box
area to be constant (NPAT ensemble). Both the applied
surface tension and NPAT simulations are problematic, since
they require additional parameters. For each lipid type, lipid
mixture, temperature, and embedded protein, a different value
or the area or surface tension needs to be supplied, which is
often not available. These parameters have also been shown
to vary greatly with lipid type and hydration level.26,27 In
addition, simulations in the NPAT ensemble do not allow
the membrane to stretch and breathe laterally, hindering
important conformational transitions in membrane proteins
or the insertion of peptides into membranes. Thus, such an
approach is inappropriate for partitioning simulations. The
delicate balance of large and opposing forces that goes into
the lateral pressure profile indicates that a fragment-based
parametrization strategy is possibly limited, and fitting to
bulk lipid properties such as the area per lipid is required.
Recently, Sonne et al. have described a reparametrization
of the CHARMM force field to obtain greatly increased areas
per lipid, though still 6% below experimental values for
dipalmitoylphosphatidylcholine (DPPC).14 Similarly, Hög-
berg et al. have reported improved CHARMM parameters
for tension-free simulations of dimyristoylphosphatidylcho-
line (DMPC).15 Improved GROMOS parameters are also
reported by Kukol.28 Interestingly, even very recent new lipid
parameter sets, such as the GAFF set,19,29 or polarizable
models,20 do not provide the correct area per lipid in the
tension-free NPT ensemble.

A lipid parameter set that yields reasonable areas per lipid
in the NPT ensemble is the widely used UA model by Berger

et al.16 A UA description is beneficial for performance
reasons: For example, an all-atom model of a DPPC molecule
requires 130 atoms, while in UA models this number is
reduced to 50. Thus, the calculation of lipid-lipid interac-
tions is 6.7 times faster in the UA model. The Berger lipid
paramters were essentially derived from previous united-atom
optimized potentials for liquid simulations (OPLS-UA)
studies by Essex et al.,30 who described the first OPLS-UA
lipid parameters by assembling parameters from studies of
Jorgensen et al. on hydrocarbons,31 ammonium ions,32 and
esters.33 The missing types for connecting atoms between
the various functional groups (choline, phosphate, glycerol)
were obtained in an ad hoc fashion. For example, for C6
and C12 in DPPC, the methyls in dimethyl phosphate (q )
0.2, σ ) 3.8 Å, ε ) 0.170 kcal/mol) were adjusted to CH2

united atoms by lowering the Lennard-Jones (LJ) well depth
to ε ) 0.118 kcal/mol, which is the value for a hydrocarbon
CH2 in OPLS-UA. Subsequently, Berger et al.16 described
a parameter set where the charges were replaced with entirely
new values based on quantum mechanical calculations by
Chiu et al.23 The Berger set retained the LJ parameters of
the Essex lipids, with the exception of the lipid tail
hydrocarbon united atoms, which were refitted to reproduce
thermodynamic data for liquid pentadecane. Torsions were
assigned from GROMOS.34,35

Most commonly used simulation software cannot handle
the simultaneous use of force fields that differ in their basic
structure. Typically, LJ combining rules as well as 1-4
scaling factors for torsions are usually hard-coded and have
to be unique throughout. This has made it difficult to perform
simulations where the protein is modeled by OPLS-AA,36

with a 1-4 scaling factor of 0.5, and the lipid parameters
are modeled with the Berger set, which uses different torsions
and scale factors. Some tricks have been proposed in the
literature to overcome these problems, such as removing 1-4
interactions completely and refitting new torsions.37 How-
ever, scale factors are critically important to describe both
intra- and intermolecular interactions. Small or zero scale
factorsswhere the complete 1-4 interaction is handled by
the torsion potentialswere found to be problematic.36 Thus,
it would be beneficial to have a set of lipid parameters with
torsions refitted for a scale factor of 0.5 for both the LJ and
Coulombic 1-4 interactions.

The present work has arisen from a desire for a simple
UA lipid set that can be combined with the description of
the protein using OPLS-AA. Starting from the Berger
parameters, we report such a set. The major changes include
a refitting of all torsions using quantum-mechanical profiles
as the starting point, followed by further refinement in long
time scale lipid bilayer simulations. In addition, the hydro-
carbon lipid tail LJ parameters were reworked by long
simulations of bulk liquid pentadecane. In the original study
by Berger et al., a too low value of the heat of vaporization
was used in the parametrization, resulting in lipid tail LJ
interactions that are significantly too weak. Third, the charges
on the major groups were adjusted to allow for a simpler
parametrization in which the ester groups are treated equally.
Finally, a key requirement of the new model was the

1804 J. Chem. Theory Comput., Vol. 5, No. 7, 2009 Ulmschneider and Ulmschneider



reproduction of the correct area per lipid in the NPT
ensemble, without applying a surface tension.

II. Methods

All simulations were performed with the Hippo MD/Monte
Carlo program (www.biowerkzeug.com) and Gromacs (ver-
sion 4.0.2, www.gromacs.org).38 The pentadecane simula-
tions were run with 267 molecules in a cubic box in the
NPT ensemble. In most of the MD simulations, the Andersen
thermostat was used to maintain the temperature.39 The
pressure was kept constant at 1 bar by performing isotropic
Monte Carlo pressure moves at intervals of 1000 time steps.
Such moves involve the scaling of the box by a small random
amount and a rejection/acceptance of the move using the
Metropolis criterion.40 Both the Andersen thermostat and
Monte Carlo pressure moves have the advantage to suffer
from no known artifacts, with the resulting statistics exactly
representing the NPT ensemble.40 Thus, we used these
methods to obtain accurate numbers for the simulation
parameters. In practice, the results are almost identical when
other commonly known coupling methods are used, such as
the Berendsen thermostat.41

The pentadecane simulations were run with Hippo using
a simple nonbonded cutoff of 20 Å, with a smooth feathering
to zero over the last 0.5 Å. Since there are no net charges
on the aliphatic hydrocarbon united atoms, no Coulombic
interactions need to be calculated, and no long-range
electrostatic methods (e.g., particle-mesh Ewald (PME)) are
necessary. For united-atom hydrocarbons, the electrostatic
effects originating from the small polarizability need to be
implicitly covered by the LJ terms. Long-range LJ interac-
tions beyond the cutoff were included by using the usual
correction terms.40 This affects both the potential energy
andsthrough the barostatsthe system volume. Exact defini-
tions of the cutoff correction are only available for homo-
geneous LJ fluids. If the system contains atom types with
diverse LJ parameters, no exact description is possible, and
the correction equation assumes a mix of the atomic
parameters. The contribution of the cutoff correction to the
energy scales with ∼rcut

-3. To avoid an unnecessary influence
of the parametrization results on the details of the correction
terms, a very large cutoff of 20 Å was chosen for the LJ
interactions. This also minimizes potential differences due
to the exact nature of the cutoff treatment, which is based
on the distance of the center of charge groups. The time step
was set to 1 fs to avoid the results being influenced by
integrator errors. Simulations were 200 ns long, with the runs
at 25 and 50 °C extended to 400 ns.

Control Monte Carlo simulations were also performed with
Hippo using a setup identical to that of the MD runs. The
results were similar to those of MD. Additional simulations
of pentadecane were also performed with Gromacs using the
Berendsen temperature and pressure coupling41 and a cutoff
of 20 Å. Finally, several simulations were performed with
the original Berger hydrocarbon parameters.

For both pentadecane and DPPC, all bond and angle
parameters were taken from previous studies.16,30 Torsions
were refitted for a 1-4 scale factor of 0.5 by matching
against HF/6-31G* profiles obtained by dihedral scans on
the usual lipid fragments, such as methyl acetate, glycerol,
dimethyl phosphate, and choline, as described previously.21

For the all-C2 torsion in the lipid tail, the more accurate
MP2:CC data reported by Klauda et al. were used in the
fitting, which results in a significant lowering of the gauche
wells as compared to HF/6-31G*.11 For example, in butane
∆Etransfgauche ) 1.01 kcal/mol for HF/6-31G*, but decreases
to 0.63 kcal/mol for MP2:CC. Future improvement is
possible by applying the higher theory also to the other
dihedrals, but this is beyond the scope of the present study.
Interestingly, dihedrals were not fitted previously for the
Berger force field. In the orginal study, mainly standard
torsions from the GROMOS force field were applied,16 and
a similar approach was used in a recent update of the Berger
parameters by Kukol.28 The lipid bilayer simulations were
run in the NPT ensemble at 323 K, using weak temperature
coupling with a coupling constant of 0.1 ps,41 semi-isotropic
weak pressure coupling, and no applied surface tension. Both
systems with 50 and 128 DPPC molecules were studied. As
the differences between the thermodynamic results were very
small (see the Introduction), the results reported here are for
the smaller system. Simulations were 100 ns long, with a
time step of 2 fs. Bonds involving hydrogen atoms were
constrained.42 Water was represented using the TIP3P water
model,43 electrostatic interactions were treated by the PME
method,44 and LJ interactions used simple cutoffs ranging
from 10 to 14 Å. The total sampling time reported in this
work is ∼3 µs, while the accumulated simulation time during
the complete parametrization work was about ∼15 µs.

III. Pentadecane Results

A. Pentadecane. The saturated lipid tails of DPPC are
parametrized using pentadecane as the molecular fragment.
Table 1 gives an overview of the simulation performed on
pentadecane. A challenge in united-atom parametrization for
liquid hydrocarbons is that all electrostatic effects (although
minor, given their small polarizability) must be implicitly

Table 1. Summary of Simulations of Pentadecane Performed in This Studya

parameters

C2 C3

force field σ (Å) ε (kcal/mol) σ (Å) ε (kcal/mol) time (ns) thermostat barostat T (°C)

Gromacs G96 3.96 0.091 3.96 0.136 20 Berendsen Berendsen 25-50
Gromacs OPLS 3.955 0.103 3.955 0.154 20 Berendsen Berendsen 25
Hippo OPLS 3.955 0.103 3.955 0.154 400 Andersen MC -20 to + 100

a All simulations were performed for 267 pentadecane molecules in a cubic box, with a nonbonded cutoff of 20 Å, long-range LJ cutoff
corrections, and a time step of 1 fs, in the NPT ensemble at a pressure of 1 bar and the indicated temperature.
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incorporated through the LJ potential, whereas explicit charge
dipoles can be used in all-atom descriptions. As the original
saturated linear hydrocarbon OPLS-UA parameters were
designed for smaller alkanes up to hexane,31 Berger et al.

obtained improved LJ parameters for pentadecane by fitting
to the available liquid-phase experimental densities and heats
of vaporization.16 This was achieved by increasing the σ of
both the C2 and C3 united atoms by 1.4% from 3.905 to
3.96 Å and greatly reducing ε by 23% from 0.118 to 0.091
kcal/mol for C2 and from 0.175 to 0.136 kcal/mol for C3.
Combined with the proper torsion potential, these values
result in a reasonable description of liquid pentadecane (see
Table 2).

Since the original simulations at 50 °C were only 10 ps
long, and used a rather small cutoff of 10 Å, but with LJ
cutoff corrections, we performed several new pentadecane
simulations with the same parameters, for 20 ns, and with a
cutoff of 20 Å, including dispersion cutoff corrections.
Despite the more thorough setup, we obtained almost similar
results, with the density agreeing perfectly and ∆Hvap only

Table 2. Density and Heat of Vaporization of Pentadecane
for the Original Lipid Parameter Set

F (g/cm3) ∆Hvap (kcal/mol)

rcut
a (Å) 25 °C 50 °C 25 °C 50 °C

Bergerb 10 0.7457 14.77
Bergerc 20 0.7584 0.7433 15.54 15.15
Chiud 20 0.7788 18.40
exptle 0.7650 0.7478 17.41 16.96
exptlf 18.35

a Cutoff corrections for long-range LJ interactions are included.
b From ref 16 based on 10 ps simulations of pentadecane.
c Based on 20 ns. d Reference 47. e Reference 45. f Reference 46.

Figure 1. Illustration of a DPPC lipid molecule, with the charge groups and atomic charges indicated. Also shown are the
values by Essex et al.30 and Berger et al.16
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slightly (2%) higher. This indicates that, for this almost
homogeneous LJ fluid, the cutoff correction is very accurate,
and it is not really necessary to use very high cutoffs of 20
Å. The density is also well matched against experimental
data at both 25 and 50 °C. However, ∆Hvap seems to be
underestimated by ∼12% at both temperatures. The value
of ∆Hvap is mainly dependent on ε, the strength of the LJ
interaction. The low value of 15.5 kcal/mol reported by
Berger et al. is due to the older experimental data used in
that study.16 More recent measurements indicate this value
is substantially larger, ranging from 17.41 kcal/mol45 to as
high as 18.35 kcal/mol46 at 25 °C (see Table 2). Subse-
quently, improved parameters for pentadecane with larger ε
were reported by Chiu et al., resulting in ∆Hvap ) 18.4 kcal/
mol.47 The stronger LJ interactions will increase the attraction
in the lipid tails and thus significantly affect the bilayer
properties, such as lowering the area per lipid.24 Thus, we
chose to refit our new parameters to the higher values of
∆Hvap and over a larger temperature range.45

B. Melting Point Behavior. All equilibrium properties
were obtained from a series of NPT simulations at temper-
atures ranging from 253 to 373 K. Below its melting
temperature of 283.1 K, pentadecane freezes into stacked
lamellae with regular hexagonal packing. Since the reproduc-
tion of liquid-state properties was the main goal here, all of
the experimental values used in the fitting were from the
liquid phase.

A poor parametrization of the hydrocarbon parameters can
lead to freezing of the pentadecane box at temperatures above
its melting point.11 Figure 2 shows a simulation that
spontaneously freezes due to incorrect parametrization,
indicating that simulations should be in the multinanosecond
range to detect such instabilities. Since the parameters are
developed for the lipid tails, any incorrect parametrization
with respect to the melting behavior will lead to bilayer
simulations that show artificially high ordering, or even a
gel phase. To determine the melting behavior of the present
parameters, a series of simulations were performed at
different temperatures to obtain Tmelt for each parameter set.
Tmelt can only be calculated approximately due to the severe
slowing of sampling near the phase transition, so there is an
uncertainty of (3 K, as illustrated in Figure 3. The melting
point seems to be mainly affected by the energy difference

of the gauche and trans conformers ∆Etransfgauche. By slight
adjustments of the all-CH2 torsion, a different melting point
can be obtained without altering the thermodynamic proper-
ties too much. Figure 3 shows the dependence of the melting
point on ∆Etransfgauche. For a small increase in 0.15 kcal/
mol, the melting point shifts upward by 21 K, while the
average ratio of trans conformers of all rotatable bonds
increases only minimally. These results indicate that torsional
parameters must be carefully checked to accurately describe
the liquid phase. Many previous lipid parametrization studies
report sampling times too short to have detected such
instabilities. In this study, we have verified that the melting
point of both pentadecane and the DPPC bilayer is within 4
K of the experimental values.

C. Thermodynamic Properties of Pentadecane. Very
good fits were obtained for the density, heat of vaporization,
isothermal compressibility, thermal expansion coefficient, and
constant-pressure heat capacity (Table 3). As a general trend,
the density is mostly dependent on σ and the heat of
vaporization on ε. We obtained the best fit for σ ) 3.955 Å
(C2 and C3) and ε ) 0.103 kcal/mol (C2) and 0.154 kcal/
mol (C3). This represents a lowering of the original OPLS
values of ε by 12%, whereas in the Berger parametrization
the reduction was 23%.16 As a result, van der Waals
interactions in the lipid tails are significantly stronger.

The density as a function of temperature is shown in Figure
4. The experimental data are represented as a solid line.45

The standard deviations are very small due to the small
fluctuation of the system box, and errors with respect to
experiment are tiny, typically <0.5%. The heat of vaporiza-
tion is obtained from ∆Hvap ) 〈Egas〉 - 〈Eliq〉/N + RT, where
〈Egas〉 is the average potential energy of a single pentadecane

Figure 2. Example of a simulation of pentadecane that results
in a freezing transition at ∼11 ns.

Figure 3. Dependence of the melting point Tmelt of pentade-
cane on the conformational energy difference ∆E of the trans
and gauche wells. An increase in ∆E of ∼0.15 kcal/mol results
in a positive melting point shift of ∼21 K (solid line, left axis).
The average population of trans states increases only slightly
(dashed line, right axis).

Table 3. Results for the Simulations of Pentadecanea

25 °C 50 °C

sim exptlb sim exptlb

F (g/cm3) 0.7664 0.7650 0.7495 0.7478
∆Hvap (kcal/mol) 17.46 17.41 16.88 16.96
κ (10-6 bar-1) 93.7 88.2c 111.8 104.1d

R (10-5 K-1) 88.4 89.1 92.3 93.1
Cp

liq (cal/(mol K)) 107.5 112.3 112.2 115.3

a Density F, heat of vaporization ∆Hvap, isothermal
compressibility κ, thermal expansion coefficient R, and liquid heat
capacity Cp

liq. b Experimental data (except κ) from ref 45.
c Reference 46. d Reference 72.
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molecule in the gas phase (obtained from a Monte Carlo
simulation) and 〈Eliq〉/N is the average potential energy per
molecule in the liquid phase. The agreement here is also
almost perfect, and error estimates are very low since the
potential energy of the system converges rapidly. Our value
of ∆Hvap ) 17.46 kcal/mol at 25 °C matches the experimental
one of 17.41 kcal/mol (c.f. Table 3). However, some
experimental sources indicate this to be as high as 18.35 kcal/
mol.46

While the density and ∆Hvap converge quite quickly, the
remaining thermodynamic quantities are obtained from
fluctuation formulas and require much longer time scales.
To obtain fully converged results, the pentadecane simula-
tions were extended to 400 ns each. The isothermal com-
pressibility, κ, is computed from the volume fluctuations:

where σV ) (〈V2〉 - 〈V〉2)1/2 is the standard deviation of the
fluctuating system volume. A comparison of the calculated
values versus experiment reveals that κ tends to be slightly
overestimated, but the agreement nevertheless is very good
(Figure 5). The thermal expansion coefficient R is given by

where H ) E + PV. Figure 5 shows the excellent correlation
to the available experimental curve. Estimation of the liquid
heat capacity Cp

liq is complicated by the improper classical
description of vibrations in the fully flexible molecule. The
standard procedure is to calculate only the fluctuations of
the intermolecular enthalpy:

The full heat capacity for the liquid is then determined from
Cp

liq ) Cp
gas + Cp

inter/N - R, where Cp
gas is the experimental

heat capacity for the ideal gas.36 Cp seems to be slightly
underestimated, although the agreement with experiment is

still very good (Figure 5). The gas-phase contribution is quite
large, typically 80%.

Despite the united-atom description, both the density and
heat of vaporization can be reproduced with errors of <0.5%
from experiment, while the other thermodynamic quantities
are within ∼5% of the experiments. Similar observations
have been made with all-atom alkane force fields.11,48 This
also compares favorably to polarizable all-atom models for
pentadecane, where the deviations from experiments were
in fact slightly higher.49 However, these parameters were
designed to cover a wider range of hydrocarbons.

D. Role of the Thermostats and Barostats. The MD
simulations were run with the Andersen thermostat and
Monte Carlo volume moves to model the exact NPT
ensemble (see the Methods). To compare to the more
commonly used weak temperature and pressure coupling
schemes, we repeated the simulations with these methods
using Gromacs. The resulting density at 25 °C is F ) 7.670
g/cm3 (<0.07% difference), and ∆Hvap ) 17.54 kcal/mol
(<0.4% difference). It seems that, for this system, the choice
of the temperature and pressure coupling scheme has little
to no influence on the equilibrium properties and that the
values are reliable.

IV. Lipid Parameters

A. DPPC Parametrization. The next stage was the
assembly of the new lipid parameter set. An illustration of
a DPPC molecule is shown in Figure 1, together with the
charges by Essex et al.30 and Berger et al.16 LJ parameters
are the same on all atoms between these models, except the
CH2 and CH3 groups in the lipid tails, which are based on
the pentadecane simulations. One of the goals of the new
parametrization was to have identical charges on both ester
groups. This is the case in the Essex parametrization and in
most other lipid force fields,11,12,17 but not in the Berger set.
Treating the ester groups similarly reduces the amount of
fitting required substantially, leading to more robust and

Figure 4. Density and heat of vaporization of pentadecane
as a function of temperature. The results of the simulations
are shown as dots. Experimental values for T > Tmelt are
shown as smooth solid lines.45 The shaded area represents
the solid lamellar phase.

κ )
σV

2

〈V 〉kT

R ) 〈VH〉 - 〈V 〉〈H〉
〈V 〉kT2

Cp
inter )

σH,inter
2

kT2

Figure 5. Isothermal compressibility κ, thermal expansion
coefficient R, and liquid heat capacity Cp of pentadecane as
a function of temperature. Experimental values for T > Tmelt

are shown as smooth solid lines.45,72 The shaded area
represents the solid lamellar phase.
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transferable parameters. Although separate charge groups are
no longer necessary when PME is used, it is beneficial to
retain such groups to allow simple cutoff simulations. We
thus started by slightly rearranging the charges of the Berger
lipids to obtain the charge distribution illustrated in Figure
1. Further refinement was then based on reproducing
experimental data in fully hydrated bilayer simulations.

The first test of the new parameters is whether simulated
lipid bilayers retain the experimentally observed area per lipid
A in the tension-free NPT ensemble. While experimental
estimates of 57-71.2 Å2 have been reported over the years
(see the reviews by Nagle et al.),26,50 we choose the more
recent value of 63.0 ( 1.0 Å2 obtained by simultaneously
analyzing X-ray and neutron scattering data as the target of
our parametrization.51

There is now a consensus that use of long-range electro-
static treatment (PME) is essential to obtain correct bilayer
properties, while the use of a simple cutoff leads to bilayers
that are too stretched and laterally shrunk.52-54 This is easily
understandable, given the strong charges in the lipid head-
groups. Despite this, there remains a significant dependence
of the area per lipid on the value of the LJ cutoff.52 This is
usually set to a low ∼10 Å for performance reasons. Given
the nonisotropy of the bilayer environment, the use of simple
analytic cutoff correction schemes that assume homogeneous
isotropic liquids is problematic, although some advancements
have been made in this direction.55-57 The problem is acute
for united-atom lipid molecules since the charges on the lipid
tails are zero; i.e., there are only LJ interactions in the
hydrophobic phase. With a small LJ cutoff, lipid tails interact
at most with their first-shell neighbors. If the LJ cutoff is
increased, the attractive nature of the LJ potential leads to
more laterally compact bilayers.

The area strongly fluctuates (standard deviation of (1.5
Å2; see Figure 6) on the multinanosecond time scale,
indicating that reliable numbers require simulations of at least
100 ns length. Figure 7 shows the obtained areas per lipid
for various simulations as a function of the LJ cutoff. There

is a systematic decline of ∼7-10% for all simulations as
the LJ cutoff is increased from 10 to 14 Å. The lowest area
is obtained for the Essex parameters, which results in an area
of ∼57 Å2, and a notably increased ordering of the lipid
tails into parallel, mostly trans packing. For a larger cutoff,
these parameters lead to a transition of the bilayer into the
gel phase with the area shrinking to ∼47 Å2. Bilayers
simulated with the Berger set behave very differently. As
previously observed the area is significantly larger at 65.3
Å2,54 and drops to only 60.9 Å2 for the 14 Å LJ cutoff. This
is a smaller decline than for the other models, and is caused
by the weaker LJ interactions in the lipid tails of the Berger
set. However, the much larger area is not due to the
hydrocarbon parameters, but rather due to the differing
charges on the polar part of the lipid molecule. The charge
distribution on the headgroup developed by Chiu et al.23 is
much more polar than the values by Essex. Thus, we
performed a series of bilayer simulations with the headgroup
charges replaced by the Berger set, with some minor
adjustments to achieve the charge group partitioning il-
lustrated in Figure 1. Interestingly, the greatly modified
phosphate and choline charges only lead to a marginal
increase in the area to 58.9 Å2 (Figures 6B and 7B). A similar
insensitivity of the area per lipid on the headgroup charge
distribution has been reported by Sonne et al.14 This leaves
only the ester groups (and glycerol) as the source for the
higher area. As shown in Table 4, the original OPLS-UA
parameters for esters are very similar to the more modern
OPLS-AA ester charges obtained by Price et al.58 In the
Berger set, both the carbonyl and alkoxy O atoms are much
more negative, and the carbonyl C is more positive. We
therefore tried two new charge sets, one where the carbonyl
C is made more positive but the oxygens are only slightly
more negative (I), and one which is close to the Berger
charges (II). The effect of these changes on bilayer properties
is dramatic, with a strongly increased area per lipid of 62.3
Å2 for set I and 62.9 Å2 for set II (Figure 7A). This is very

Figure 6. Upper panel: Area per lipid during the 100 ns
simulations for the Berger parameters, this work (A), and a
parameter set where only the charges in the headgroup were
modified (B). The solid horizontal line represents the most
recent experimental value of 63.0 Å2.51 Lower panel: Area
per lipid dependence on the charge distribution of the ester
groups by calculating the average ester dipole moment over
all DPPC molecules over the complete simulation.

Figure 7. Dependence of the area per lipid on the van der
Waals cutoff used in the simulations. Electrostatic interactions
are evaluated using the PME method. The experimental
values for the fluid (LR) phase and gel phase are indicated as
dashed lines.26,51 There is a systematic decline of the area
for all models as rcut-LJ is increased. The new model with more
polar ester charges (A) results in higher areas than a model
where only the headgroup is taken from the Berger set (B).
The smallest decline is observed for the Berger set, due to
the weak lipid tail LJ interactions. The Essex parameters show
a transition into the gel phase.
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close to the recent estimate of 63.0 Å2 by Kučerka et al.51

Thus, we used these charges in our final parametrization.
The effect of the ester charges is also illustrated in Figure

6 (lower panel). There is a correlation between the dipole
strength and the area per lipid, with the more polar ester
group resulting in higher areas. We did not attempt a more
thorough reparametrization of the ester charges beyond the
goal of finding a charge set that is identical on both esters,
but the results indicate that further investigation might bring
additional improvements. Interestingly, the final charges on
the esters are close to the values reported by Sonne et al. in
their reparametrization of the CHARMM lipid force field
(see Table 4), although the area per lipid reported in this
study was significantly smaller (60.4 Å2).14 Almost identical
charges are reported by Högberg et al., who obtained
improved CHARMM parameters for DMPC.15 Thus, it
seems a general pattern that the ester charges should be more
polar in lipid molecules to obtain correct bilayer properties,
and are a major reason why the Berger parameters perform
well. This is probably related to an increased hydration of
the ester groups, but it could also be that the higher ester
dipole simply covers for other imbalances in the lipid
parameters. Further investigations will be performed in the
future to clarify these observations.

B. Role of Headgroup Parameters. The phosphocholine
headgroup of the lipid molecules exhibits a characteristic
tilt toward the bilayer normal, which can be analyzed by
calculating the distribution of the vector connecting the
phosphorus and the nitrogen atoms, averaged over the course
of the simulation and all lipid molecules. The resulting
distributions for all parameter sets are shown in Figure 8.
Despite the large differences in the partial charges of the
phosphate and choline groups in the three models, the
average orientation is perpendicular to the bilayer normal in
all cases, with a tilt of ∼90°. The distribution is broad with
2σ ) 60° in all cases. Similar values of 78-86° were found
in previous studies with the Berger set,19,59 and have been
reported as low as ∼60° in other lipid force fields.19 Overall,
the parametrization changes in the headgroup seem to have
little effect on the average headgroup orientation, which is
interesting given the major differences between the Essex
and Berger charges.

C. Order Parameter. The fine structure of the lipid
bilayer and its ordering in the fluid phase can be measured
experimentally using 2H NMR spectroscopy. This involves
deuterating hydrogens at selected carbon atoms and measur-
ing the residual quadrupolar couplings of the CD bond. The

resulting deuterium order parameter SCD is a measure of the
disorder and the relative orientation of the CD bond. SCD is
obtained from SCD ) 2/3Sxx + 1/3Syy,

60 where the order
parameter tensor is defined as

with θR being the angle of the axis R () x, y, z) to the bilayer
normal (z axis) and the averaging taking place over molecules
and time. In oriented samples, the axis of motional averaging
is identical to the bilayer normal. Due to axial averaging,
Sxx ) Syy and Sxx + Syy + Szz ) 0, resulting in61

Since no CD bonds are available on the united-atom carbons,
either the deuteriums are constructed using ideal bond
geometry or the vector from carbon Cn-1 to Cn+1 is used as
the molecular axis for the nth CH2 unit.60

Figure 9 shows the calculated SCD parameters for both the
sn-1 and sn-2 chains. The overall agreement with the
experimental data is good.61-63 SCD values obtained for the
Berger set are identical to those reported in a previous study
by Patra et al.52 The modified LJ parameters on the alkyl

Table 4. Electronic Net Charges on the Ester Group in
Various Force Fieldsa

O) C OS

OPLS-UAb -0.45 0.55 -0.4
OPLS-AAc -0.43 0.51 -0.33
Bergerd -0.7(-0.6) 0.7 (0.8) -0.7
CHARMM for NPTe -0.6 0.83 -0.47 (-0.54)
CHARMM for NPT (DMPC)f -0.61 0.82 -0.54
this work (set I) -0.55 0.7 -0.45
this work (set II) -0.6 0.8 -0.5

a Charges in parentheses denote the second ester group.
b Reference 31. c Reference 58. d Reference 16. e Reference 14.
f Reference 15.

Figure 8. Distribution of the headgroup orientation vector
(P-N) with respect to the bilayer normal for the individual
models. The distributions are very similar, with the maximum
at ∼90°.

Figure 9. Deuterium order parameter for the two acyl chains
of DPPC, for the simulations with the new parameter set (thick
curve with error bars, estimated from block averaging), and
the Berger lipids. Also shown are the experimental values of
Seelig et al.61 (A), Petrache et al.62 (B), and Douliez et al.63

(C).

SR� ) 1
2

〈3 cos θR cos θ� - δR�〉

SCD ) -Szz /2 ) 〈(3 cos2 θCD - 1)/2〉

1810 J. Chem. Theory Comput., Vol. 5, No. 7, 2009 Ulmschneider and Ulmschneider



chains will affect the torsional energetics and lipid ordering.
Nevertheless, the changes are only small, with results for
the sn-1 chain similar to those of the Berger set and a slightly
increased ordering in the sn-2 chain. SCD is strongly correlated
to the area per lipid, with increased ordering for bilayers
that are laterally too small. Values are also very sensitive to
the gauche to trans energy difference of the alkyl torsions.
Our results are in line with what has been reported previously
on DPPC lipids.11,14,52 A special case is the SCD on C2. On
the sn-1 chain, this is in the high plateau region with -SCD

) 0.215, while it is split and much lower in the sn-2 chain
(-SCD ) 0.15 and 0.09).61 With the new parameters, the
SCD on C2 is slightly higher than with the Berger parameters,
which underestimates the SCD on sn-1. On sn-2, both sets
give a similar value that is too large compared to that from
the experiments. Reproducing the splitting on sn-2 would
require abandoning the united-atom model and explicitly
adding the CD bonds. Despite the absence of the deuteriums,
the results show that SCD can be accurately obtained even in
the united-atom approximation.

D. Electron Density. The density distribution of the lipid
bilayer can be measured by X-ray and neutron diffraction
studies.64 The total density is usually obtained from structure
factors,26,65,66 and the individual density contributions of the
various lipid components can be extracted from structural
models.67 Computationally, the electron density is obtained
by binning atoms along the direction of the membrane
normal, weighted with the correct number of electrons,
although it can also be calculated from the structure factors.67

Figure 10 shows the electron density distribution of both the
new model and the Berger set compared to the experimental
results obtained by Kučerka and Nagle (H2 model).68 There
is a close agreement of the overall shape with the experi-
mental data, with the characteristic headgroup peaks and the
methyl troughs. As the water model underestimates the bulk

water density by 4% at 50 °C, the electron density differs
by the same amount in the water phase. The experimental
bilayer width (defined as the head-to-head distance) is 37.8
Å.68 Our model gives a slightly smaller width of 36.6 Å,
while the Berger set gives 35.6 Å. Individual components
also compare well against the H2 hybrid model. Similar to
what has been observed for the all-atom lipid CHARMM
force field, there is an underestimation of the methyl peak
in the bilayer center, which is compensated by an overesti-
mation of the CH2 density.67

E. Lateral Lipid Diffusion. Lipid bilayers are two-
dimensional liquids characterized by the lateral diffusion of
the individual lipid molecules. The lateral diffusion constant
can be obtained from the Einstein relation

where the mean-squared displacement is calculated as

with ri(t) is the position of the center of mass (CM) of lipid
molecule i at time t, with averaging taking place over all
time origins t0. The results are shown in Figure 11. There is
both a fast short-time diffusion caused by the fluctuation of
lipid molecules in their trapped space and a slower long-
time diffusion characterized by jumps of the lipid molecules
from one basin to the next. Only the long-time diffusion is
calculated here, by fitting the MSD over the linear phase
from 20 to 30 ns. The resulting diffusion constants have to
be corrected for the systematic CM motion of the two
monolayers.69 Klauda et al. have reported significant finite
size effects in the lateral diffusion, with a ∼3 times larger
Dlat as the size of the lipid patch is decreased from 288 to
72 lipids.25 To investigate a similar system size dependence,
the simulations were performed with both 128 and 50 lipids.
As can be seen from Figure 11, the lateral diffusion of both
the new parameters and the Berger lipids depends only little
on the system size, with a ∼10% smaller Dlat for the 50-
lipid systems in both cases. A slightly larger diffusion
constant is found for the new parameters, with Dlat ) (16.5
( 0.9) × 10-8 cm2/s ((15.3 ( 0.8) × 10-8 cm2/s for 50
lipids), than for the Berger lipids, which have Dlat ) (11.4

Figure 10. Electron density profiles from the simulations: (A)
Berger lipids, (B) this work. The thick lines are the results of
the simulations, averaged over the final 80 ns of the trajectory.
The thin lines represent the experimental density determined
by Kučerka and Nagle,68 including the individual components
(CG ) carbonyl-glycerol).

Figure 11. Average mean-square displacement of the lipid
molecules as a function of time. Results for boxes containing
50 and 128 lipids are shown. The new parameters result in
slightly faster lateral diffusion of the lipids, independent of the
size of the simulated bilayer patch.

Dlat ) lim
tf∞

1
4t

MSD(t)

MSD(t) ) 1
N ∑

i)1

N

〈(ri(t + t0) - ri(t0))
2〉
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( 0.8) × 10-8 cm2/s ((10.0 ( 0.7) × 10-8 cm2/s for 50
lipids). The new values closely match recent experimental
estimates of Dlat ) 15.2 × 10-8 cm2/s (at 324 K) obtained
from 1H pulsed field gradient magic angle spinning NMR
spectroscopy.70 Earlier photobleaching experiments have
reported Dlat ) 12.5 × 10-8 cm2/s at 323 K.71 Thus, lateral
diffusion is excellently reproduced by the new lipid parameters.

V. Conclusion

The new UA lipid parameters presented here have been
designed to be used in combination with OPLS-AA for
proteins. This avoids some of the tricks that have been
necessary to use OPLS-AA in membrane protein simulations.
A scale factor of 0.5 is now applied for all nonbonded 1-4
interactions throughout. In addition to refitting the torsion
angles for the new scale factor, we have used the opportunity
to improve on some of the other parameters of the Berger
lipid force field: The acyl chains now have stronger LJ
interactions, as determined from fitting to newer values of
∆Hvap of pentadecane. The stronger interactions do not lead
to an incorrect freezing behavior, as special care was taken
to ensure the melting points of both pentadecane and DPPC
are not overestimated. In addition, the charge set of the
Berger lipids is adjusted to allow symmetric carboxylate ester
groups, simplifying the model and reducing the amount of
torsions that have to be individually fitted. The area per lipid
of 62.9 Å2 is 3.5% lower than in the Berger force field, but
exactly matches the more accurate recent experimental value
of 63.0 Å2 by Kučerka et al.51 Electron density profiles and
deuterium order parameters and lateral diffusion constants
are also well reproduced. Most importantly, lipid bilayers
can be simulated in the NPT ensemble without applying
additional surface tension terms or having to fix the
membrane surface area to be constant. Several recent lipid
reparametrizatoin efforts have also focused on addressing
this common lipid force field deficiency.14,15 Tension-free
NPT simulations are critical for studying peptide partitioning,
where the membrane must be able to stretch laterally. The
present work offers an accurate lipid parametrization for
straightforward use with the widely employed OPLS-AA
force field. The real test of the combined lipid and protein
force field will be with multimicrosecond simulations of
complex processes such as peptide adsorption, partitioning,
and folding. To reach such time scales, the use of united-
atom lipid molecules will remain crucial for the foreseeable
future, given the vast computational advantage over all-atom
lipids. This situation is similar to that of water molecules,
where three-site models (SPC, TIP3P) are still used in the
vast majority of simulations although more sophisticated, but
slower alternatives exist. Additional work is currently under
way to extend the present work to other classes of lipids
and lipid mixtures.
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Abstract: We have formulated a procedure for evaluating the anisotropic stiffness of a molecular
assembly. First, we show how to reduce the dimensions of the matrices that appear in a
conventional Hessian analysis of mass-weighted coordination by using a 12-dimensional
transverse-rotational basis set for expansion. This treatment yields matrix representations of
the intermolecular force and inertial load of the constituent molecules. Next we applied this
procedure to 2-aminopyridine dimers and numerically analyzed the low-frequency (∼THz region)
normal-mode vibrations. By validating the elements of stiffness matrix, this study exemplifies a
derivation of the parameters necessary for the normal-mode analysis of a large system like a
crystal, without any explicit representation of the potential functions.

1. Introduction

The increasing interest in supramolecular materials and
biomolecular systems demands better fundamental under-
standing of intermolecular interactions. Recently, terahertz
(THz) spectroscopy has been used for direct observation of
intermolecular interactions in such contexts as the analysis
of the hydration of sugars, the arrangement of nucleobases
in DNA, and the polymorphism of medicinal drugs.1-5 The
terahertz region (∼300 GHz to 3 THz) covers hydrogen bond
vibrations, van der Waals interactions, overall molecular
distortion, and molecular libration; hence, the comparison
of theoretical and experimental vibrational spectra can
provide a molecular-level picture of the macroscopic phe-
nomena of materials. Accordingly, several quantum chemical
and molecular mechanics-based approaches have been
reported.6-12 In addition, anharmonic effects should also be
included to quantitatively explain experimental results.13,14

Because we have reached the primary stage of interpreting
the contents of THz spectra, it seems important to clarify
the harmonic behavior of a molecular system in which
intermolecular forces dominate the optimum arrangement of
the molecules in a material. Various phenomena related to

intermolecular vibrations and librations have been studied
by Hessian-based methods such as normal-mode analyses
and lattice dynamics (phonon band calculations).15-18 In
applications of these methods to macromolecular systems,
coarse graining of molecular representation has frequently
been employed as an approach toward reducing computa-
tional consumption.15c,d,19 Combined with empirical force
field parameters, the coarse graining approach has been
successful to some extent in reproducing the collective
motions of proteins, which resonate at GHz frequencies. In
these studies, the elements of the dynamical matrix were
evaluated as second derivatives of a potential function whose
composition included Lennard-Jones-type repulsion-disper-
sion and electrostatic interactions; hence, the results depend
on the force field parameters used. The efforts in developing
the force field seem to be devoted to constructing a set of
universal parameters by decomposing the molecular interac-
tions into components for respective atom-atom or multi-
pole-multipole pairs.20-23 For these efforts to succeed, some
intrinsic difficulties need to be dealt with, for example, the
balancing of several types of potential depth and the
incorporation of secondary (cooperative) effects such as
instantaneous induced polarization.

On the one hand, on the basis of the above points, it may
be insufficient to apply an empirical force field to a Hessian-
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based analysis of THz spectra, in which specific intermo-
lecular interactions are sensitively reflected. On the other
hand, some groups satisfactorily reproduced THz spectra by
normal-mode calculation based on ab initio molecular orbital
or density functional theory methods.7-12 However, applying
these quantum chemical methods to such large systems as
proteins, nucleotides, and molecular crystals is obviously
difficult in view of the consumption of computational time
and resources. In this study based on ab initio quantum
chemical calculations, we attempt to derive the elements of
a dynamical matrix for a coarse-grained representation of a
molecular assembly. The normal-mode frequency calculated
by the quantum chemical method reflects the curvature of
the potential surface, into which the electronic effects are
adequately incorporated. Because the intermolecular forces
are responsible for the low-frequency vibrations, it seems
quite reasonable to extract meaningful parameters from the
huge amount of numerical atomic displacement data. The
thus-obtained “tailor-made” parameters will lead to reliable
predictions of THz spectra.

2. Theoretical Basis

In the framework of Hessian analysis of molecular vibration,
the displacement vectors X are obtained by diagonalizing
the mass-weighted Hessian matrix (M-1/2KM-1/2) with the
eigenvalue matrix Ω that contains the corresponding fre-
quency ω as follows24

For an isolated single molecule, the dimension of M and
K is 3N, where N is the number of constituent atoms, and
the diagonalization gives six zero-eigenvalues for the mo-
lecular motions of pure translation and pure rotation. For a
system composed of two molecules that have NI and NII

atoms, respectively, the number of degrees of internal
freedom is 3(NI + NII) - 6, in which 3NI - 6 and 3NII - 6
modes of motion originate from the internal freedom of the
respective molecule. Consequently, six residual modes are
attributed to the degrees of freedom of the intermolecular
vibration.

In practical normal-mode analysis for dimeric systems, the
vibrations of intermolecular motions appear within a wave-
number range of 10-200 cm-1, clearly separate from the
wavenumber ranges of intramolecular motions that appear
in the region of 400-4000 cm-1. This observation suggests
that there are only small coupling effects among the
intermolecular and intramolecular vibrations. Therefore, the
atomic displacement of an intermolecular vibration is ap-
proximately represented by a combination of several basic
motions of a “frozen” molecule. The intermolecular vibra-
tional motions are approximately represented by a linear
combination of the translational and rotational (hereafter
denoted as T/R) motions of the constituent molecules as a
basis set. For example, the basis for symmetric transverse
motion along the x-axis is hereafter denoted as Tx + Tx

(Figure 1). This representation is a kind of Karhunen-Loève
(KL) expansion, a method for extracting the principal
components of poly dimensional vectors.25 In the space

spanned by the six basic motions each of molecules I and
II, Hessian analysis results in six nonzero eigenvalues for
intermolecular vibration modes and six zero-eigenvalues for
pure translation and pure rotation of a given dimeric system.

The vectors that represent the basic motions of the
monomer are normalized as follows

where Tq and Rq (q ) x, y, z) are column vectors of
dimension 3N, and (xn, yn, zn) is the position of the n-th atom
with respect to the center of mass. Thus, the 3(NI + NII) ×
12 matrix B for the KL transformation of a dimeric system
is written as follows, in which, e.g., Tj x represents -Tx, and
subscripts I and II denote the monomers I and II

The orthogonality of the column vectors in the mass-
weighted T/R basis M1/2B depends on the selection of the

(M-1/2KM-1/2)(M1/2X) ) (M1/2X)Ω2 (1)

Figure 1. Schematic representation of the twelve basic
motions of a molecular dimer.
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coordinate system. These vectors can be modified to M1/2C
so as to be orthonormal by using S, the overlap matrix BtMB

Here we redefine X as a 3(NI + NII) × 12 matrix that
contains the atomic displacement vectors for six transverse
(columns 1-3) and rotational motions (columns 4-6) and
six intermolecular vibration modes (columns 7-12) of the
dimer. Then, the coefficients of the KL expansion are
collected in �, a 12 × 12 matrix. In other words, the
displacement vectors of dimension 3N are reduced to 12
dimensions

According to the definition of S, we can construct a matrix
Γ-1 that represents the inertial load of the molecules

where M and I are the molecular weight and the tensor of
inertia, respectively, of a monomer. In eq 7, we define the
matrix N-1 as consisting of the molecular weights and the
spatial extent of atoms of given monomers (θq

-2/N nearly
equals the variance of the atomic location around the q-axis)

The matrix Γ, named by analogy with the G-matrix in the
GF method,24 represents the measure of inertia in a given
internal coordinate system. Similarly a matrix Φ can be
defined to represent a measure of stiffness

Using eqs 6, 7, and 9, we can rewrite eq 1 into the
following equations

Because the matrix Γ-1/2ΦΓ-1/2 is Hermitian, its eigen-
vectors Li (i-th column vectors of L) have to be orthogonal
but not necessarily normalized. The product LtL gives a

diagonal matrix Λ2, the elements of which represent the
modal masses in the reduced T/R coordinate system

Equation 11 indicates that the modal masses in the T/R
coordinate system would ideally be identical to those in the
full-atom coordinate system, if M-1/2C provides a sufficiently
good basis of the expansion (Vide infra). In the present study,
however, we redefine Λ2 by collecting the squared norms
(λi

2) of Li as diagonal elements

Using Λ-1 as the normalization factor, we can obtain U,
which is approximately unitary (and could be unitary if the
basis set of KL expansion is complete). The squared
components of U represent the mixing ratio of the basic
motions like Tx + Tx in a given atomic displacement for
intermolecular vibration

Then, we can obtain the force constant matrix Φ for a
given internal T/R coordinate system as follows

3. Computational Details

Hydrogen-bonded dimers of 2-aminopyridine and its 5-ha-
logenated derivatives were selected as examples for the
analysis described above. The geometry of the dimers was
optimized by means of the Hartree-Fock method using the
6-311G** basis set, and the structure thus obtained was used
for the normal-mode vibration analysis at the same level of
calculation. These molecular orbital calculations were per-
formed with the Gaussian03W program.26 The values of the
geometry and eigenvectors were picked up from the output
file and then processed with versatile spreadsheet software.

4. Results and Discussion

4.1. Derivation of Force Constants. For the optimized
structure of a dimer of 2-aminopyridine, we set the coordinate
system as shown in Figure 2. The values of the Cartesian
coordinates were used for preparing the B and C matrices.

M1/2C ) M1/2BS-1/2 (5a)

S ) BtMB (5b)
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L ) Γ-1/2N-1/2S-1/2� (10b)

Figure 2. Coordinate system used for analysis of the
intermolecular vibrations of 2-aminopyridine dimer.
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The first six columns (for transverse and rotational motions)
of X were made by a procedure similar to that used to make
the B matrix, and the subsequent six columns were picked
up from the output of the calculation of normal-mode
vibration. Then we obtained � according to eq 6. The 12 ×
12 diagonal matrix Ω was made from the six eigenvalues
(converted to ω2/NA in s-2 mol unit) of the normal-mode
analysis. The first six elements (for transverse and rotational
motions) were forced to be zero, and the latter six elements
were allocated for the intermolecular vibrations.

Next, following eq 7, we constructed the Γ-1 matrix, which
contains information on the inertial load (Table 1). Because
we are studying a homodimer, only the top-left quarter of
the matrix is fundamental (i.e., the full matrix is a direct
sum of this table). The block related to transverse motions,
i.e., Tx, Ty, and Tz, is diagonal, and the elements Γii

-1

substantially coincide with the molecular weight (in g mol-1)
of the monomer. The block related to rotational motions,
i.e., Rx, Ry, and Rz, represents the tensor of inertia given in
units of g Å2 mol-1 () 10-23 kg m2 mol-1). Then we derived
Γ-1/2, which was used to make L.

By visualizing the atomic displacement, we labeled each
vibration mode by one of six nicknames (Twist, Buckle,
Staggered, Opening, Shear, and Stretch) that represent the
character of the motion.27 The modal mass (λ2/g mol-1) of
each vibration mode for the internal T/R basis is given in
Table 2. These values are in fairly good agreement within a
factor of 0.98-1.00 with the modal mass calculated for the
full-atom coordinate. This agreement was as expected from
eq 12, which also validates the completeness of the T/R basis
set. Accordingly, we can also see good agreement between
the values of the modal stiffness that were calculated for
respective coordinate systems.

By following eq 13, we obtained U. Columns 7-12 of U
are shown in Table 3. We confirmed that the product of Ut

and U approximates a unit matrix, again showing that the
T/R motions that were used serve as a good basis for
expansion of the intermolecular vibration.

It can be seen from Table 2 that for the vibration modes
of Twist, Buckle, and Opening, the atomic displacements
are predominantly represented by Rx - Rx (92%), Ry - Ry

(96%), and Rz - Rz (96%) motions, respectively. Although
we assigned the vibration modes at 67.7 and 77.4 cm-1 as
Staggered and Shear motions, it is hard to distinguish one
from the other by observing the visualized motion. These
two modes are represented as combinations of Ry + Ry and
Tx - Tx but with a difference in their mixing phase. The
Stretch motion, which is often treated by a simple pseudodi-
atomic approximation, is actually dominated by Rz + Rz

(60%) motion for this case.
Subsequently, we obtained the Φ matrix according to eq

14. Tables 4 and 5 summarize the elements of Φ in the
gerade block and the ungerade block, respectively, where
the elements (Φij) are given in units of N m-1. For the terms
related to rotational motions, the values correspond to a
torque measured in N m-1 Å2 () 10-20 N m). Because the
molecular system belongs to the Ci point group, the off-
diagonal elements of Φ between the motions of the gerade
representation (Tx - Tx, Ty - Ty, Tz - Tz, Rx + Rx, Ry +
Ry, and Rz + Rz) and the motions of the ungerade
representation (Tx + Tx, Ty + Ty, Tz + Tz, Rx - Rx, Ry -
Ry, and Rz - Rz) are definitely zero. Furthermore, if we
neglect the pyramidization of the amino groups, the molec-

Table 1. Elements (in g mol-1 unit) of Γ-1

Tx Ty Tz Rx Ry Rz

Tx 94.1 0.00 0.00 0.00 -0.00 -0.00
Ty 0.00 94.1 0.00 -0.00 -0.00 0.00
Tz 0.00 0.00 94.1 0.00 0.00 0.00
Rx 0.00 -0.00 0.00 156.6 42.9 0.69
Ry -0.00 -0.00 0.00 42.9 111.3 -1.29
Rz -0.00 0.00 0.00 0.69 -1.29 267.7

Table 2. Comparison of the Modal Mass and Modal
Stiffness Calculated for Internal Coordinate Systems

modal mass
(g mol-1)

modal stiffness
(N m-1)

ν
(cm-1)

ω2/NA

(s-2 mol) T/R full-atom T/R full-atom

Twist 16.5 16.0 4.03 4.11 0.06 0.07
Buckle 28.4 47.7 4.73 4.71 0.23 0.22
Opening 63.6 238.9 4.29 4.36 1.02 1.04
Staggered 67.7 270.7 6.20 6.30 1.68 1.70
Shear 77.4 353.7 6.21 6.27 2.20 2.21
Stretch 109.4 706.0 5.68 5.70 4.01 4.02

Table 3. Elements of the Block of Intermolecular
Vibrations in U Matrix

Twist Buckle Opening Staggered Shear Stretch

Tx + Tx -0.005 0.005 -0.009 0.000 0.000 0.000
Ty + Ty 0.001 -0.001 0.008 0.000 0.000 0.000
Tz + Tz -0.003 -0.009 -0.006 0.000 0.000 0.000
Rx + Rx 0.000 0.000 0.000 -0.095 -0.010 0.117
Ry + Ry 0.000 0.000 0.000 -0.680 -0.620 0.040
Rz + Rz 0.000 0.000 0.000 -0.201 0.312 0.772
Tx - Tx 0.000 0.000 0.000 0.594 -0.556 0.529
Ty - Ty 0.000 0.000 0.000 -0.299 0.344 0.321
Tz - Tz 0.000 0.000 0.000 0.215 0.301 -0.080
Rx - Rx -0.959 0.192 -0.180 0.000 0.000 0.000
Ry - Ry 0.201 0.981 0.056 0.000 0.000 0.000
Rz - Rz 0.200 0.012 -0.982 0.000 0.000 0.000

Table 4. Elements (in N m-1) of Φ in the Gerade Block

Ag-like Bg-like

Tx - Tx Ty - Ty Rz + Rz Rx + Rx Ry + Ry Tz - Tz

Tx - Tx 37.9 0.37 30.9 4.20 3.24 -5.11
Ty - Ty 0.37 13.1 36.3 3.83 -0.64 0.11
Rz + Rz 30.9 36.3 124.8 13.7 -0.06 -3.42
Rx + Rx 4.20 3.83 13.7 3.92 8.40 -3.55
Ry + Ry 3.24 -0.64 -0.06 8.40 29.2 -11.1
Tz - Tz -5.11 0.11 -3.42 -3.55 -11.1 4.60

Table 5. Elements (in N m-1) of Φ in the Ungerade Block

Bu-like Au-like

Tx + Tx Ty + Ty Rz - Rz Rx - Rx Ry - Ry Tz + Tz

Tx + Tx 0.00 0.00 0.34 0.06 0.02 0.00
Ty + Ty 0.00 0.00 -0.29 -0.04 0.00 0.00
Rz - Rz 0.34 -0.29 61.89 7.67 -1.05 0.21
Rx - Rx 0.06 -0.04 7.67 4.07 1.93 0.01
Ry - Ry 0.02 0.00 -1.05 1.93 5.33 -0.05
Tz + Tz 0.00 0.00 0.21 0.01 -0.05 0.00
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ular dimer has nearly C2h symmetry. Thus, dividing the table
into blocks for the Ag-like motions (Tx - Tx, Ty - Ty, and
Rz + Rz) and the Bg-like motions (Rx + Rx, Ry + Ry, and
Tz - Tz) is informative. For the Ag vs Ag and Bg vs Bg blocks,
the diagonal elements show relatively large positive values,
but some off-diagonal elements are as large as the diagonal
ones. The off-diagonal elements in the Ag vs Bg block are
relatively small but are not quite zero, suggesting a mixing
of the Ag and Bg representations due to the deformation from
a strict C2h symmetry. In particular, the cross term (13.7 N
m-1) between Rx + Rx and Rz + Rz is exceptionally large.
For the Bu vs Bu and Au vs Au blocks, the diagonal terms of
Tx + Tx, Ty + Ty, and Tz + Tz are naturally close to zero,
because these bases represent the transverse motion of the
molecular dimer. The off-diagonal terms in the Au vs Bu

block are relatively small, but again we observe an excep-
tionally large coupling constant (7.67 N m-1) between Rx -
Rx and Rz - Rz.

4.2. Comparison with the Rigid Body Approxima-
tion. In a previous study, we investigated the mechanical
nature of multiply hydrogen-bonded systems by means of
ab initio quantum chemical calculations.28 By a multivariate
analysis of the curvature of the potential surface for 20
dimeric molecular systems, we derived a set of force
constants for translational shear in the x, y, and z directions.
The force constants only roughly reproduced the frequencies
of the intermolecular vibration modes of a molecular dimer,
which in turn indicated the significance of the off-diagonal
terms of the dynamical matrix when evaluating the frequency
of intermolecular vibration. In the present study, we suc-
ceeded in explicitly obtaining the full elements of the stiffness
matrix for an internal coordinate system reduced by KL
transformation. Here we attempt to compare the present
results with those of our previous calculations. If we neglect
the off-diagonal terms, we can calculate the wavenumber
for each mode of the basic motions as follows

Table 6 lists the wavenumbers calculated with eq 15. The
values (in cm-1) for Rx - Rx (21.0), Ry - Ry (28.5), and
Rz - Rz (62.6) motions are in good agreement with those
for Twist (16.5), Buckle (28.4), and Opening (63.6) motions,
respectively, as expected from the predominant component
of these normal modes (Table 3). The wavenumbers for Tx

- Tx (82.6), Ty - Ty (48.5), Ry + Ry (66.7), and Rz + Rz

(88.9) are within a range similar to those of Shear (67.7),
Stagger (77.4), and Stretch (109.4) modes but are not exactly
identical. We interpret this mismatch in frequencies as a
result of appreciable coupling terms, namely, Tx - Tx vs Rz

+ Rz (30.9 N m-1) and Ty - Ty vs Rz + Rz (36.3 N m-1), as
given in Table 4.

On the other hand, based on simple rigid body mechanics,
the wavenumber of homodimeric molecule is given as
follows

where Ki (i denotes the type of motion) is the force constant
of the intermolecular interaction, and M () MI ) MII) is
either the molecular weight (for transverse motion) or
moment of inertia divided by 1 Å2 (for rotational motion).
Therefore, we can compare a series of force constants for
12 basic motions by simply calculating Φii/2. Table 6
compares the force constants and wavenumbers calculated
by means of the method described in this paper (eq 15) and
those calculated by rigid body mechanics (eq 16). For the
rigid body mechanical calculation, we used a set of force
constants that we developed for NH · · ·N hydrogen bonds.28

Note that for transverse motion (e.g., Tx - Tx), the force
constants (18.9, 6.5, 2.3 N m-1) derived from the T/R based
expansion are in good agreement with those (22.9, 9.6, 2.4
N m-1) from a rigid body approximation. As for rotational
motions, the force constants for antisymmetric combinations
(e.g., Rx - Rx) show good agreement between the two
methods. A deviation found in the Ry - Ry mode may be
attributed to the intentional neglect of the pyramidization of
the amino group in our former work. On the contrary, a
similar comparison for symmetric combinations (e.g., Rx +
Rx) shows a considerable disagreement between the results
obtained by means of the two methods. This disagreement
demonstrates the difficulty in deriving force constants
analytically for molecules with complicated shapes.

4.3. Effects of Molecular Inertial Load on Frequen-
cy. Among the various intermolecular vibration modes,
Stretch motion is of special interest because of its spectro-
scopic accessibility as well as its relevance to the strongest
force of intermolecular interaction.29-31 Conventionally, the
relation between the frequency and force constants is
analyzed based on the pseudodiatomic approximation or on
its modified formulation. Although the latter method is
applicable to asymmetric top dimers, it can handle only the
force constant of stretching motion.29 As demonstrated above,
however, the frequency of the Stretch mode is determined
as a result of coupling among Tx - Tx, Ty - Ty, and Rz +
Rz motions, all of which belong to the Ag representation on
the assumption that the dimer has C2h symmetry. These three
basic motions give rise to two other motions with Ag

representation, that is, Shear mode vibrations and rotation
of the dimer around the z-axis (Rz). Our present study
provides a comprehensive interpretation of the relation
between the frequency and force constants of intermolecular
vibration.

Table 6. Comparison of Force Constants and
Wavenumbers of Basic Motions

wavenumber (cm-1) force constant (N m-1)

T/R basis rigid body T/R basis rigid body

Tx - Tx 82.6 90.9 18.9 22.9
Ty - Ty 48.5 53.0 6.5 9.6
Tz - Tz 28.8 29.4 2.3 2.4
Rx + Rx 20.6 18.5 2.0 1.6
Ry + Ry 66.7 30.9 14.6 3.1
Rz + Rz 88.9 18.4 62.4 2.7
Rx - Rx 21.0 26.1 2.0 3.1
Ry - Ry 28.5 0.0 2.7 0.0
Rz - Rz 62.6 61.9 30.9 30.2

ν̃i )
1

2πc�Φii

Γii
(15)

ν̃i )
1

2πc�(MI + MII)Ki

MIMII
) 1

2πc�2Ki

M
(16)
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Previously, we pointed out that the frequencies of the
intermolecular vibration modes of 5-halogenated-2-aminopy-
ridine do not follow the pseudodiatomic model.28 For
example, the frequency of the Stretch mode was nearly
insensitive to changes in the molecular weight. Here we
attempt to clarify the relation between the frequencies and
molecular weight of 2-aminopyridines on the basis of our
present formulation. Figure 3(a)-(d) shows the contribution
(Uij

2) of the Tx - Tx, Ty - Ty, and Rz + Rz motions to Stretch
and Shear mode vibrations and Rz motion, for 2-aminopy-
ridine and its 5-halogenated derivatives. As can be seen from
these figures, each of these motions is sufficiently described
as a combination of three basic motions with Ag representa-
tion, although their contributions differ slightly depending
on the molecule. This result suggests that the frequency of
the Stretch and Shear modes can be approximately evaluated
by diagonalizing the 3 × 3 partial matrix of Γ1/2ΦΓ1/2 that
corresponds to the cross terms among the Tx - Tx, Ty - Ty,
and Rz + Rz bases.

Figure 4 shows the values of selected elements in the
stiffness matrix Φ as a function of (M0/M)1/2, where M0 and
M are the molecular weights of 2-aminopyridine and
5-halogenated-2-aminopyridine, respectively. The diagonal
elements related to transverse displacement, namely,
ΦTx-Tx,Tx-Tx and ΦTy-Ty,Ty-Ty (Figure 3(a)), are scarcely influ-
enced by substitution at the 5-position, and their cross term
ΦTx-Tx,Ty-Ty (Figure 3(b)) is nearly equal to zero. These results
indicate that the restoring force along the x- and y-axes
mainly originates in double NH · · ·N hydrogen bonds, and
any effects from halogen substitution are negligibly small.
As for ΦRz+Rz,Rz+Rz, the force constant for the twisting
distortion, the value steeply increases with increasing mo-
lecular weight. Because ΦRz+Rz,Rz+Rz is proportional to the
torque around the z-axis, this constant should increase with
the square of distance (RHB) between the center of mass and
the centers of hydrogen bonding sites.32 Figure 4(a) shows the

plot of ΦTx-Tx,Tx-TxRHB
2, which is in fairly good agreement

with ΦRz+Rz,Rz+Rz, again suggesting that hydrogen bonding
is a predominant interaction for intermolecular forces.
Similarly, the plot of ΦTx-Tx,Tx-TxRHB shows behavior parallel
to that of ΦTx-Tx,Rz+Rz.

Figure 5(a) shows some elements of Γ1/2ΦΓ1/2 (≡ ∆), a
dynamical matrix for a given T/R coordinate. The elements
related to transverse motion, namely, ∆Tx-Tx,Tx-Tx and
∆Ty-Ty,Ty-Ty, are nearly proportional to (M0/M)1/2, which is a
result expected from the pseudodiatomic model. The behavior

Figure 3. Contributions of Tx - Tx, Ty - Ty, and Rz + Rz

motions to the vibration modes of (a) 2-aminopyridine and (b)
5-fluoro-, (c) 5-chloro-, and (d) 5-bromo-2-aminopyridines.

Figure 4. (a) Diagonal and (b) off-diagonal elements of the
stiffness matrix (Φ) as functions of (M0/M)-1/2. Dashed lines
indicate the values of ΦTx-Tx,Tx-TxRHB

2 (in (a)) and ΦTx-Tx,Tx-TxRHB

(in (b)) for comparison with a model based on rigid mechanics.

Figure 5. (a) The diagonal elements and (b) the eigenvalues
of a 3 × 3 partial matrix of ∆. The frequencies of the Stretch
and Shear modes calculated for the full-atomic representation
are also imposed on (b).
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of the value of ∆Rz+Rz,Rz+Rz is not simple, but it is rather
insensitive to the change of molecular weight. This constancy
is interpretable from the compensation of the changes in
ΦRz+Rz,Rz+Rz and Γ-1

Rz+Rz,Rz+Rz, both of which are roughly
proportional to RHB

2. Figure 5(b) shows the eigenvalues of
a 3 × 3 matrix that contains the elements related to Tx -
Tx, Ty - Ty, and Rz + Rz in ∆. One of the eigenvalues nearly
equals zero, suggesting its correspondence to Rz motion. The
other two eigenvalues are in excellent agreement with those
of the Stretch and Shear modes that were calculated by using
full-atom coordination. Consequently, the apparent compli-
cated behavior of the Stretch mode frequency observed for
the 5-halogenated-2-aminopyridine dimer is a result of the
constant stiffness (∼20 N m-1) of double NH · · ·N hydrogen
bonds and the sequential transfer of the center of mass. This
result clearly shows that our approach is useful for under-
standing the fundamentals of intermolecular vibrations even
for asymmetric top dimers with various moments of inertia.

5. Conclusions

This report presents a procedure to evaluate the elements of
the stiffness matrix relevant to intermolecular force based
on normal-mode calculations for full-atomic representation.
We utilized a variation of Karhunen-Loève transformation
that is quite useful for extracting the characteristics of serial
data such as digitalized information. We developed a
quantitative representation for characterizing atomic dis-
placement during intermolecular vibration, which had con-
ventionally been classified according to visualization of
molecular motion. By using a compressed 12-dimensional
space of molecular motion, we obtained the elements of the
stiffness matrix, which yields a dynamical matrix when
combined with the inertial load of the molecules in question.
Note also that the treatment based on KL transformation is
not confined to a rigid molecule approximation. It would be
possible to take into account the mixing of intra- and
intermolecular vibrations in the THz region by adding some
eigenvectors for the single molecular normal mode to the
basis set of the KL expansion. Accordingly, the method
presented in this study is quite versatile for evaluating the
parameters necessary for the coarse-grained normal-mode
calculation of a large molecular assembly including a periodic
system as well as for obtaining deep insight into the nature
of intermolecular vibration.
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Abstract: Optical properties of aromatic chromophores are used to probe complex biological
processes, yet how the environment tunes their optical properties is far from being fully
understood. Here we present a method to calculate such properties on large-scale systems,
like biologically relevant molecules in aqueous solution. Our approach is based on many-body
perturbation theory combined with a quantum mechanics/molecular mechanics (QM/MM)
approach. We include quasiparticle and excitonic effects for the calculation of optical absorption
spectra in a QM/MM scheme. We apply this scheme, together with the well-established TDDFT
approach, to indole in water solution. Our calculations show that the solvent induces a red shift
in the main spectral peak of indole, in quantitative agreement with the experiments, and they
point to the relevance of both the electrostatic and geometrical origin of the shift.

1. Introduction

Optical properties of aromatic chromophores embody a key
facet of cell biology, allowing for a precise interrogation of
a variety of biochemical events, including signaling, me-
tabolism, and aberrant processes. These range from probing
transient interactions between biomolecules (proteins and
nucleic acids), to protein dynamics and fibrillation and plaque
formation in neurodegenerative diseases. Understanding how
the environment tunes such optical properties is therefore
crucial, yet this information is so far mostly lacking. A
powerful tool to address this issue is given by the so-called
quantum mechanics/molecular mechanics (QM/MM) meth-
ods.1,2 In this approach, the aromatic moiety may be treated
at the quantum mechanical level, while the environment is
described with an effective potential: the influence of the
MM (presumably very complex and very large) environment

is basically included as an external potential and, in case
the chromophore is covalently bound to MM region, by a
mechanical coupling with the environment.

Most often the QM approach is solved within density
functional theory (DFT)3,4 to study ground state properties,
and time-dependent DFT (TDDFT)5,6 when excited states
are involved, as in the case of the optical properties.7–9

TDDFT is computationally very efficient, yet its predictive
power depends dramatically on the system and on the
functional used to reproduce the exchange and correlation
interactions.

Several approaches, including post-Hartree-Fock ones10

(configuration interaction and similar methods), have been
already used to predict optical properties of biomolecules.
Many-body perturbation theory (MBPT),11,12 is an attractive
alternative, although of course it comes with higher com-
putational cost than TDDFT. In fact, TDDFT13 scales with
N3 (“N” is the number of atoms), while MBPT scales with
N6 (or N4 in the case where the Haydock algorithm14 is used).
However, biophysical applications of one of the most widely
used schemes of MBPT, the combination of the GW
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method11 with the Bethe-Salpeter equation (BSE),12 are,
so far, lacking. The GW method is used for the evaluation
of the single quasiparticle energies, and the BSE to introduce
excitonic effects. The determination of a more accurate long-
range exchange-correlation kernel of TDDFT is also based
on MBPT.15 Keeping in mind this for future biological
applications, it is imperative to assess the accuracy of the
MBPT/MM approach versus the more conventional TDDFT/
MM one.7,8

The main assumption in interfacing a QM/MM method
with TDDFT or MBPT approaches is that the optical
properties of the chromophore do not involve the electronic
structure of the MM part. Hence, special care has to be
devoted to the choice of the two regions.

Here we present MBPT/MM calculations on the indole
ring of the tryptophan residue (Figure 1). This system appears
ideal for such an approach in several respects. First, it is
very relevant biologically, as the indole ring has been
exploited as a spectroscopic tool to monitor changes in
proteins16 and to yield information about local structure and
dynamics. In fact, its spectral signatures allow it to be used
as a structural probe in proteins. Second, it contains a
relatively small number of atoms (N ) 16), which can be
treated quite easily at the GW-BSE level. Next, the optical
gap of liquid water (7 eV)17 is larger than the gap of the
indole molecule (4.3 eV).18 Under 7 eV, the spectra of indole
and water do not overlap, and it is justified to treat the solvent
in a classical scheme. Finally, CASPT2 calculations18 and
experimental data19 are available and allow us to compare
the changes of the optical properties upon passing from the
gas phase to aqueous solution.

2. Methods and Computational Details

We performed QM/MM Car-Parrinello20 simulations of
indole in water by the fully Hamiltonian QM/MM scheme.2

Such a scheme has been applied to a variety of biological
systems.21 The biomolecule was treated, at this step, at the
DFT level, while the solvent was described by the TIP3P

water model22 and the van der Waals parameters on each
indole atomic site in the interaction potential were employed
by using the Amber force field.23 This approach allows for
an explicit treatment of solvation, in contrast to previous
studies.18,19,24

Indole single quasiparticle energies have been then evalu-
ated at the GW level for several snapshots. Finally, we solved
the BSE to calculate the average absorption spectrum and
compared the results with the ones obtained within TDDFT.
We calculated the indole absorbance in water as well as in
gas phase. The shift in the spectra gives the solvatochromism.

In this section we review the main aspects of the GW
methods and of the Bethe-Salpeter equation and explain
how it is possible to include these methods in a QM/MM
scheme. In 1965, Hedin25 formulated a set of five equations
that link together five important functions: the Green’s
function, G; the self-energy, Σ; the vertex function, Γ; the
polarizability, P; and the screened potential, W. The poles
of the Green’s function in frequency space are the energies
of the states of an ionized system referred to the ground-
state energy. Here the ionized system is a system to which
an electron has been subtracted or added. These excitation
energies are called quasiparticle energies εj

QP and can be
derived by solving the following eigen-problem:

This expression is derived from the Dyson equation in the
Lehmann representation.11 VH is the Hartree potential and
UQM is the Coulomb potential generated by the QM ions,
while UQM/MM is the potential felt by the electrons due to
the point charges of the MM part.

According to Hedin equations, the self-energy is a
functional of G, W, and Γ. Several calculations have
demonstrated that Γ can be approximated to a delta function
for most of the systems.26 Under this condition, the time-
Fourier transform of the proper exchange-correlation self-
energy, Σ(r,r′,ω), is a convolution of the Green’s function,
G(r,r′,ω), with the screened Coulomb potential, W(r,r′,ω):
Σ ) iGW. This is the reason for the name “GW approxima-
tion”. In this work, Σ is calculated as the convolution of the
noninteracting electron system’s Green function (G0) and the
screened Coulomb potential (W0) built from the Kohn-Sham
(KS) eigenvalues and eigenvectors of the QM/MM system,
εj

QM/MM and φj
QM/MM, respectively. More explicitly, G0 in

frequency space is

where εF is the Fermi energy. The screened potential is
evaluated as W ) ε-1V, where V is the bare Coulomb potential
and ε is the microscopic dielectric function at the independent
particle level.

Figure 1. Indole in water solution. Colors correspond to the
following atomic species: blue, N; cyan, C; white, H; red, O.

[-p2∇2

2m
+ UQM(r) + UQM/MM(r) + VH(r)]φj

QP(r) +

∫ d3r′ Σ(r, r′, εj
QP) φj

QP(r′) ) εj
QP

φj
QP(r) (1)

G0(r, r′, ω) ) ∑
j

φj
QM/MM(r) φj

QM/MM*(r′)

[ θ(εj
QM/MM - εF)

ω - εj
QM/MM + iη

+
θ(εF - εj

QM/MM)

ω - εj
QM/MM - iη] (2)
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Equation 1 has the same form as the KS equation4 in the
presence of an external field, where the exchange-correlation
potential Vxc

DFT(r) is replaced by the self-energy Σ(r,r′,εj
QP),

which acts as a nonlocal, energy-dependent potential.
Therefore, the eigenvalue problem described above can be
solved perturbatively considering the KS Hamiltonian as an
unperturbed Hamiltonian and Σ - Vxc as a perturbative term.
The quasiparticle eigenvalues are obtained in first-order
perturbation theory:

All the Coulomb interactions, and hence also the one
induced by the classical MM region, are included in the KS
eigenvalues εj

QM/MM and eigenvectors |φj
QM/MM〉.

The quasiparticle energies obtained by the GW method
and the QM/MM eigenfunctions φj

QM/MM(r) are then used to
calculate the optical absorption spectrum through the solution
of the BSE equation:

where 1 ≡ r1,t1 (and similarly for 1′, 2, 2′, etc.) and PIQP is
a generalized four-point irreducible polarizability and de-
scribes the propagation of independent quasielectron and
quasihole couples (for a review, see ref 12). All the
interactions are contained in the kernel �, defined as

The kernel � is made of two parts, V and W, resulting
from the functional derivative of the Hartree potential and
of the self-energy with respect to the single-particle Green’s
function, respectively. V is the electron-hole exchange, and
W is the term responsible for bound excitons.

In practice, to solve the BSE, the problem is recast into
an effective two-body Hamiltonian form:

where fn is the occupation number of level n. Hence, using
the spectral representation27 for the inverse of a matrix, the
interacting polarization can be obtained by solving an
effective eigenvalue problem:

The optical spectrum assumes then the following form:

where

The BSE can be physically interpreted as adding the
electron-hole interaction to the energy of the excited state
of the system. An electron-hole pair is called an exciton
and its contribution to the optical spectrum (obtained by
solving the BSE) gives the so-called excitonic effects. Since
the electron-hole interaction is attractive, it affects the
DFT+GW optical spectrum mainly with a red shift of the
peaks. Moreover, electron-hole bound states (the excitons)
occur below the single-particle gap. The difference between
the DFT+GW electronic gap and the excitonic optical gap
measures the exciton binding energy. The quantum plus
classical external potential is not explicitly present in the
BSE but indirectly determines all its ingredients via the
quasiparticle energies and wave functions.

To take into account solvation and temperature (300 K)
effects, we performed a 20 ps hybrid QM/MM Car-Parrinello
simulation of a system where the QM part was the indole
molecule and the MM part was 1376 water molecules.28

For 10 snapshots of the QM/MM dynamics (one every 2
ps) we computed the optical spectra at the independent
particle level (DFT-IPA) and within TDDFT.29 The running
average of the spectra indicates that, at the DFT level and
for a dynamics of 20 ps, the convergency of the spectrum
with the number of snapshots is achieved after six snapshots.
We confirmed this statement by a comparison with a
spectrum averaged over 120 snapshots. A better sampling
could be obtained by performing several dynamics and
repeating the test by using TDDFT and/or GW-BSE, but this
goes beyond our computational possibilities. Hence, the
subsequent GW and BSE calculations have been performed
on only six snapshots (atomic coordinates are in the
Supporting Information).

3. Results and Discussion

HOMO-LUMO Gaps. Our calculated DFT and GW
HOMO-LUMO gaps30 averaged over the QM/MM con-
figurations, resulted to be 3.8 eV (with standard deviation σ
) (0.1 eV) and 7.2 eV (σ ) (0.2), respectively. The
HOMO-LUMO gap calculated by the GW method corre-
sponds to the electronic gap and not to the optical gap. The
GW correction to the electronic gap, during the dynamics,
ranges from 3.3 to 3.5 eV. Therefore, its value can in
principle be calculated for just one snapshot, and used, with
an error of 0.2 eV, for all the other frames. This fact, already
found for liquid water,17 confirms that one can strongly
reduce the computational effort, by performing a GW
calculation for just one snapshot. However, this error would
be too large for our purpose of evaluating the solvent shift.

εj
QP ) εj

QM/MM +
〈φj

QM/MM|Σ(εj
QM/MM) - Vxc|φj

QM/MM〉

1 - 〈φj
QM/MM|

dΣ(ω)
dω |

ω)εj
QM/MM

|φj
QM/MM〉

(3)

P(1, 1′, 2, 2′) ) PIQP(1, 1′, 2, 2′) +

∫PIQP(1, 1′, 3, 3′) �(3, 3′, 4, 4′) P(4, 4′, 2, 2′) d(3, 3′, 4, 4′)
(4)

�(1, 1′, 2, 2′) ) δ(1, 1′) δ(2, 2′) V(1, 1′) -
δ(1, 1′) δ(1′, 2′) W(1, 1′) (5)

Hexc
(n1,n2),(n3,n4) ) (εn2

QP - εn1

QP)δn1,n3
δn2,n4

+

(fn1
- fn2

)∫ dr1∫ dr′
1∫ dr2∫ dr′

2 φn1

QM/MM*(r1) φn2

QM/MM(r′
1) ×

�(r1, r′
1, r2, r′

2) φn3

QM/MM(r2) φn4

QM/MM*(r′
2) (6)

∑
n3,n4

Hexc
(n1,n2),(n3,n4)Aλ

(n3,n4) ) EλAλ
(n1,n2) (7)

εM(ω) ) 1 - lim
qf0

ν(q) ∑
λ,λ′ [ ∑

n1,n2

〈n1|e-iqr|n2〉 ×

Aλ
(n1,n2)

ω - Eλ + iη
Nλ,λ′

-1 × ∑
n3,n4

〈n4|e-iqr|n3〉Aλ′
*(n1,n2)(fn3

- fn4
)] (8)

Nλ,λ′
-1 ) ∑

n1,n2

Aλ
*(n1,n2)Aλ′

(n1,n2) (9)
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As a consequence, in this work the GW corrections of the
electronic gap have been calculated for each single snapshot.

Optical Spectrum. We next calculated the low-energy
range of the optical spectrum of indole, by GW-BSE31 and
TDDFT, always as a result of an average over the QM/MM
snapshots. In Figure 2 we report our results together with
the calculated absorption spectrum in the gas phase. In our
TDDFT calculations, the most intense peak (which corre-
sponds to the 1La transition located at 4.77 eV in the
experimental spectrum)19 is mainly due to an HOMO-LUMO
transition, in agreement with previous calculations performed
by CASSCF-CASPT2 methods.18,32 The analysis of the
charge distribution of the electronic levels reveals the π-π*
character of this transition and an electronic charge depletion
around the nitrogen atom on passing from the HOMO to
the LUMO.

We notice that, in both TDDFT and GW-BSE approaches,
this peak is red-shifted on passing from gas phase to the
water solution. The value we calculate for such a red shift
is ∼0.2 eV in both cases, in good agreement with the
experiment (0.18 eV).19 A similar trend was obtained by
previous theoretical calculations of indole in water based on
CASSCF-CASPT2 methods.18 In these approaches, the
indole configuration was the one obtained after a geometry
optimization, with the solvent simulated by a continuum
model, with a cavity containing the molecule. The CASSCF-
CASPT2 prediction for the solvent shift is about 0.06 eV
only. Such an underestimation may depend on the different
geometrical conformation of indole molecule in the gas phase
and in water, caused by the interaction with the solvent
(which was not considered explicitly in).18 In fact, in our
calculations, comparison of the indole geometries in all the
snapshots with that of the stable conformation in the gas
phase (defined as the equilibrium geometry in vacuum)
shows a slight loss of planarity (the dihedral angle between
the planes of the two rings of indole is below 6°). Moreover,
compared to the gas-phase configuration, the C-C bond
lengths of indole in water can differ up to 4% and their
average value is 1%-2% larger than the one calculated for
the relaxed configuration. The angles differ by 1°-4° with
respect to the gas-phase configuration. These geometrical
changes are small but can significantly affect the optical
properties, since they involve the breaking of some symmetries.

To quantify the contribution of these effects on the solvent
shift, we performed GW-BSE calculations of the optical
absorption spectrum of indole switching on and off the water
field, in order to separate the geometry effect from the
electrostatic one. The results are presented for a single
snapshot in Figure 3. The corresponding solvent shift goes
from -0.1 eV with water field to +0.2 eV (hence, a blue
shift) without water field. This emphasizes the importance
of taking into account explicitly the electrostatic interaction
with the solvent, since the geometry distortion alone would
give, at least for this snapshot, a wrong sign.

In our calculations, TDDFT underestimates the energy of
the 1La peak19 with respect to experiments, both in gas phase
and in solution by ∼0.4 eV, and GW-BSE overestimates
them by ∼0.3 eV. Concerning the gas phase, a result closer
to the experiment is obtained by using a B3LYP functional33

with a localized basis set; the underestimation in this case
drops to 0.05 eV. We note that for this system the predictive
power of TDDFT is comparable to MBPT. This was
expected, since TDDFT is usually very efficient for small
molecules such as indole (except in some particular cases).34

Therefore, beside being a relevant biological molecule, indole
is also a good system for the main purpose of this work,
that is, the introduction and validation of a new scheme (GW-
BSE/MM) by comparing the results with the experiments
and with well-working methods on a relevant biological
system.

As expected,24 CASSCF is worse in predicting the energy
position of the first peak of the absorption spectrum. It
overestimates it by almost 1 eV or more, while CASPT2 is
more accurate (∼0.13 eV for the gas phase). All the
experimental and theoretical values obtained by different
methods concerning the indole 1La transition are summarized
and compared in Table 1.

Role of the Solute-Solvent H-Bond. The indole N-H
moiety is the only group that can form a hydrogen bond with
the solvent molecules. In this section, we investigate
qualitatively the role of the H-bond for the solvatochromism
by performing TDFFT calculations of the optical absorption
spectrum. These calculations are of course much cheaper than
the GW calculations.

Figure 2. BSE (a) and TDDFT (b) spectra of indole in water.
The tiny red dashed lines are the spectrum of each snapshot.
The red solid line is obtained by an average over these
spectra. The black dashed line is for indole in vapor phase.

Figure 3. BSE optical spectra: solid blue line, indole in vapor
phase; black dashed line, indole without water molecules, with
atomic coordinates taken from a snapshot corresponding to
13.08 ps of the dynamics; circles, indole in water, with the
spectrum calculated for the same snapshot.
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The geometry of the H-bond can be evinced by the
calculation of distribution functions calculated from the QM/
MM trajectory. The first maximum and minimum of the
radial distribution function (rdf) between N and water
oxygens Ow are 2.96 and 3.20 Å, respectively. The maximum
of N-H · · ·Ow angle, as obtained from the correspondent
angular distribution function, is 155° (radial and angular
distribution functions are available in the Supporting Infor-
mation). This result agrees with force-field-based molecular
dynamics simulation of indole in a large water box (∼10 000
solvent molecules) performed here35 as well as with previous
results reported in the literature.36

We then selected a representative QM/MM snapshot
(Figure 4), in which the N-H · · ·Ow distance is 2.91 Å, very
close to that of the first rdf peak. In addition, in this snapshot
the N-H · · ·Ow angle is 155°; this value is similar to the
maximum of the correspondent angular distribution function.

We performed on this snapshot TDDFT calculations of
the optical spectrum. The calculations differed for the MM
external potential UQM/MM: UQM/MM is either generated by a
water molecule (WAT hereafter) involved in the H-bond (i),
or by all water molecules (ii), or it is zero (iii). By comparing
the spectrum of i with that of iii, we conclude that the H-bond
induces a small red shift (<0.1 eV) on the 1La peak in this
representative snapshot (Figure 5). By comparing the spec-
trum of ii with that of iii we observe a shift larger than 0.3
eV. On the basis of these calculations, we suggest therefore
that the H-bond plays a role in the solvatochromism and that
a considerable effect is given by the bulk solvent. The latter

has to be included to obtain a quantitative evaluation of the
solvent shift.

Of course, solvent polarization and charge transfer effects
associated with the H-bond might affect the solvato-
chromism. We addressed this issue by switching on the QM
character of WAT in calculation ii. In other words, we
performed a calculation in which WAT molecule was treated
at the TDDFT level as indole, and all the other were treated
classically. A Löwdin charge analysis37 points to the absence
of charge transfer effects between indole and WAT, while
polarization effects are present (see Figure 4). The change
in absorption peak 1La relative to calculation ii is very small
(less than 0.02 eV). The same results were obtained by
including also a second water molecule. Thus, polarization
effects, although sizable, do not affect largely the absorption
spectrum. Our conclusions agree with TDDFT/MM calcula-
tions performed for another organic molecule in water
solution: acetone.38 Like indole, this molecule forms H-bonds
with the solvent. The calculated absorption spectrum is
almost the same when the solvation sphere of 12 water
molecules surrounding acetone are treated by a QM or MM
approach. The approximation of treating the solvent at a
classical level allows us to avoid small box size effects and
sample much longer time scales than using a fully ab initio
scheme. This is absolutely crucial already for this small
system. It is expected to be even more relevant for large
biological systems.

4. Summary

In this paper, we have included many-body perturbation
theory in a QM/MM scheme. We have applied it, together
with a TDDFT/MM approach, to study the optical properties
of indole in water solution. Both methods reproduce quan-
titatively the red shift induced by the solvent. The GW-BSE/
MM method can be applied to biomolecules in aqueous
solution (i.e., in laboratory-realizable conditions), although
with a larger computational cost (for this particular case,
MBPT requires 8 times more CPU time than TDDFT to
calculate the indole optical spectrum).

Many works put in evidence the GW-BSE method to be
a possible alternative to TDDFT to treat large size materials

Table 1. Theoretical and Experimental Transition Energy
(in eV) of the 1La Peak of Indole Spectrum in Gas Phase
and in Water and Their Difference

MBPT/MMa TDDFT/MMa CASPT2b EXPc

gas phase 5.1 4.4 4.73 4.77
in water 4.9 4.2 4.67 4.59
solvent shift 0.2 0.2 0.06 0.18

a This work. b Reference 19. c Reference 18.

Figure 4. Indole and the water molecule involved in the
H-bond. (A) The electronic charge distribution. (B) The
difference in the charge distribution between the entire system
and the two separated subsystems: isolated indole and
isolated water molecule. This enables us to visualize the
increasing of the polarization induced by the H-bond.

Figure 5. TDDFT absorption spectrum of indole in water.
Spectra are calculated for a selected snapshot (see the text).
Water molecules are treated classically.
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or charge transfer systems.39 We expect the GW-BSE, whose
range of applications has been here extended to molecules
in solution and in different chemical environments, to be
able to study long-range charge-transfer molecules in their
biochemical environment.40,41 Moreover, a better exchange
and correlation kernel can be derived from MBPT to improve
TDLDA/GGA.15

Our calculations show that the solvent shift is a conse-
quence of the combination of two effects: the geometrical
distortion of indole molecule in the solvent and the electro-
static interaction with the water molecules’ electric dipoles.
Both effects, and their sum, depend on the particular
configuration of the system; this emphasizes the need of
including both altogether and of averaging over several
snapshots.

This work opens the way to further applications of MBPT/
MM to other biorelevant molecules, such as fluorescent
probes in their target proteins, for which the evaluation of
the optical shift enables the understanding of the nature of
their environment.
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J. Chem. 2005, 59, 493–498.

(10) Frutos, L. M.; Andruniów, T.; Santoro, F.; Ferré, N.; Olivucci,
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Abstract: A one-body decomposition approach for investigating the electronic absorption spectra
of molecular systems was proposed and applied to water clusters (H2O)N including up to N )
80 water molecules. Two specific aspects of the present implementation are the inclusion of
the coupling between excited states and a simplified representation for the N-body Coulombic
effects. For smaller clusters, the results based on the one-body decomposition scheme are in
good agreement with full EOM-CCSD calculations. Two different regimes can be identified in
the electronic absorption profile of larger water clusters. The first low-energy regime is dominated
by local excitonic states on the cluster surface, whereas the higher-energy excitations associated
with the second one are of delocalized nature.

1. Introduction

Electronic properties of water are of fundamental importance
for understanding chemical reaction mechanisms and kinetics
in solution. However, they are not very well understood.1,2

Specifically, the relationship between the electronic and
topological properties of the hydrogen-bond network3,4 and
the influence of ionic solvation on the electronic properties
of bulk or interfacial water2 deserve further investigation.
Therefore, several recent works on the electronic properties
of water were reported.3,5-8 Emphasis was placed on
polarization effects in liquid phase,5 electron binding ener-
gies,5 dynamic polarizability,8 and electronic absorption
spectrum of water.3,6-8 On the other hand, some relevant
studies were also dedicated to water clusters with emphasis
on cooperativity effects9-11 and electronic properties.12,13

The interest in clusters is motivated by the well-established
fact that many of the cooperative effects characterizing the
complex hydrogen-bond network of liquid water can also

play a major role in determining the structure and electronic
properties of clusters. Moreover, there is also theoretical
evidence that even for relatively small clusters, the number
of hydrogen bonds for the water molecules in the interior of
the cluster is quite similar to what is found in condensed
phases of water, whereas a more labile network can be
observed for water molecules closer to the surface.14

Consequently, it should be expected that the investigation
of the electronic properties of water clusters can also provide
relevant information on the relationship between the changing
hydrogen-bond network associated with different molecular
environments and the electronic properties of water.

In this work we will focus on the prediction of the first
electronic absorption band of water clusters. Our main
purpose is to adopt a simple, general, and accurate theoretical
procedure for calculating the electronic absorption spectra
of water clusters. In addition, we have investigated the
dependence of the calculated spectra on the cluster size as
well as the role played by water molecules at different
regions of the aggregates in the absorption process. The
present theoretical procedure is based on the many-body
decomposition for the energy of a molecular aggregate.15-29

In agreement with previous many-body decomposition
schemes relying on the multilayer fragment molecular orbital
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method18,19,27 we are providing further evidence that reliable
estimates of the excitation energies of water clusters can be
carried out by using a one-body expansion of the cluster
energy. Some specific aspects of the present implementation
for calculating the electronic spectra of water clusters are
the explicit consideration of the coupling between excited
states and inclusion of different simplified representations
for the N-body Coulombic effects. This approach is applied
for the calculation of the electronic spectra for optimized
structures of water clusters including up to 80 water
molecules.

2. Theoretical Methods and Computational
Details

2.1. One-Body Treatment of Excitations. Due to the
high-order scaling of computational costs in ab initio
methods, their use is prohibitive for more than a few water
molecules. An alternative approach for the study of larger
water clusters is to use a many-body expansion, which
potentially reduces the scaling of the method to O(NX), where
X is the order to which the expansion is truncated. Recently,
Chiba et al.19 have proposed an extension of their FMO
method for use in TD-DFT calculations. Here we present a
many-body approach for investigating the electronic excita-
tions of large water clusters with an explicit treatment of
the coupling between excited states.

We follow the model of Harvey et al.12 to treat the
excitonic states. A matrix Hamiltonian is constructed in the
representation of the basis of the uncoupled water molecules.
Each of the basis functions represents the system where a
single water molecule is excited

where i stands for the index of the excited water molecule,
Φi* is the excited state of that molecule, Φj is the ground
state of a neighboring water, ri are the electronic coordinates,
and Ri are the nuclear coordinates. Molecules in the excited
state will be marked with an asterisk.

In contrast with the model of Harvey et al.,12 which was
based on a semiempirical model for both ground and excited
electronic states, we will apply a one-body approximation
to the calculation of the ab initio energy of each state. The
diagonal elements of the Hamiltonian matrix H are given
by

where E(...) stands for the energy of the excited (or ground
state) molecule at a given level of theory. In this work we
will use the EOM-CCSD method. The terms E(i*) are taken
from a EOM-CCSD calculation on the excited state of
monomer i and the CCSD energies for ground-state energies
E(j).

A common approach to increase the convergence of the
many-body expansion is to perform each monomer calcula-
tion in a point charge field representing the environment

molecules. This leads to the approximate inclusion of N-body
Coulombic effects. The diagonal terms in this case are given
by

The Ej(i) terms are defined just as before, except that the
calculations are performed with an operator added to the one-
electron Hamiltonian

where j runs over surrounding monomers, R runs over all
atoms in the monomer unit j (in case atom-centered point
charges are used), qR are the charges, and r1R is the distance
between an electron and a point charge. The C(i*) term in
eq 3 is a correction energy added to avoid double counting.
Since the energy sum in eq 3 runs over all monomers, and
each single term already contains the interaction between
the monomer and the other units, the interactions are double
counted. This correction term will be later discussed.

The off-diagonal elements Hij of the Hamiltonian, which
give the coupling between two excited states, are ap-
proximated by the interaction of the transition dipoles d01

of the two excitations

where Rij is the distance vector between the two molecules
i and j. The same approach was used by Harvey et al.,12

where the amplitude of the transition dipole vectors was
given by an analytical expression. In our case, the dipole
moments are taken from the excited-state calculations
performed on each monomer in eq 3 and placed at the center
of mass. In the EOM-CCSD case, we use the geometric
average of the right and left transition dipole moments

where d̂ is the local dipole operator at center i.
Diagonalization of the Hamiltonian matrix gives N ener-

gies, one for each state. In order to obtain the excitation
energies, one subtracts the ground-state result, which is also
obtained under a one-body treatment

where C(0) is again a term to avoid double counting of
particle interactions due to the point charge field.

Up to this point we have not discussed the point charge
field to be used or the form of the correction terms, which
are thereof dependent. In our calculations, the charges qR in
eq 4 are taken from the TIP3P model. This may seem at
first a crude approximation, since one neglects polarization
effects (the point charge field is fixed) and the fact that the
density distribution of an excited water molecule is different

Ψi ) Φi*(ri, Ri) ∏
j*i

Φj(rj, Rj) (1)

Hii ) E1B(i*) ) E(i*) + ∑
j*i

N-1

E(j) (2)

Hii ) Ej1B(i*) ) Ej(i*) + ∑
j*i

N-1

Ej(j) - C(i*) (3)

hi
PC ) ∑

j*i
∑
R∈j

qR

r1R
(4)

Hij )
1

Rij
3
[d01

i ·d01
j - 3(d01

i ·Rij)(d01
j ·Rij)] (5)

d01
i )

〈Φi|d̂|Φi*〉 + 〈Φi*|d̂|Φi〉
2

(6)

Ej1B(0) ) ∑
i

N

Ej(i) - C(0) (7)
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from its ground state. The reasons behind this choice are
manifold. First, in the TIP3P model, which is an effective
pair-potential for liquid water, the charges already include,
at least partially, polarization effects in average way. Previous
studies have also shown that these charges give reasonable
results in expanding the total energy under a many-body
approximation.15,20 Including the full Hartree-Fock potential
of neighboring molecules or simply replacing them by these
atom-centered point charges has been shown to provide
similar accuracy. We expect that this effect is also true when
applied in excited-state calculations. Second, by using the
same point charge field in all calculations, the correction term
for all excited states is the same and equal to the one in the
ground state. Under this approximation, including the cor-
rection in eq 3 amounts to adding a constant value to the
diagonal terms and, therefore, has no effect on the eigen-
vectors of the Hamiltonian. It also cancels out when
computing the difference between the ground and the excited
state. In short, if one is only interested in excitation energies,
this term can be neglected. It is unclear which approach leads
to a higher accuracy, whether neglecting the correction term
or including the excitation effect on the charge distribution.
The first approximation, however, has the advantage of a
nearly linear scaling computational cost. We consider it
almost linear, since for larger structures the addition of point
charges into the Hamiltonian will become a bottleneck (but
only for extremely large structures). It also has a very small
prefactor. If the changes in the charge distribution are
considered, an extra calculation has to be performed for each
monomer, which significantly affects the performance.
However, as strongly indicated by some test calculations (see
section 3.1), the first approximation already gives highly
accurate results, with errors below the ones estimated for
the level of theory used as a reference (EOM-CCSD/aug-
cc-pVTZ). Also, as previous works on the absorption spectra
of water show, the first absorption maximum of liquid water
can be well reproduced by treating a single water quantum
mechanically.8 This is due to the localized character of the
first excitation.

At this stage, we would like to point out the similarities
and differences between our method and other related work.
The diagonal terms Hii are calculated as in the FMO
method,18,19,27,28 with the exception that the embedding is
simplified, including only fixed point charges to mimic
electrostatic effects. In the original method, Coulomb opera-
tors taken from converged monomer densities are used. In
the work of Hirata et al.,26 the embedding was based on self-
consistent dipole moments. We find that the former approach
significantly increases the computational effort. In the case
of water, it has been seen to give only marginal improve-
ments for ground-state energies.15,20 The use of point dipoles
per molecule, on the other hand, may be unsuitable to
describe the electrostatics of hydrogen-bonded systems. Our
main goal, however, is not to review the way the electrostatic
embedding is performed but, instead, to expand the ap-
plicability of FMO-based formulations to cases where
identical chromophores are present. A many-body expansion
by itself cannot describe excitonic coupling effects.

The elongation method of Aoki and co-workers23-25 does
account for excitonic coupling. However, their formulation
does not include the electrostatic environment in the in-
trafragment excitation and is also not easily extendable to
an arbitrary correlation method. It is based on a CI-type
formalism. Also, the coupling elements have to be limited
to neighboring fragments due to the computational costs
involved in their calculation. However, in a system with
identical chromophores, excitonic coupling can lead to
mixing of states throughout the system, regardless of its size.
The symmetry-adapted-cluster/symmetry-adapted-cluster con-
figuration interaction theory29 is the most complete formula-
tion, including long-range electrostatic embedding as well
as state coupling. However, it is questionable whether it can
be computationally efficient in the case of irregular clusters.

All excited-state calculations were performed with the
equation-of-motion coupled cluster singles and doubles
(EOM-CCSD) method.30 The basis set chosen was the
augmented correlation consistent triple-� valence basis set
(aug-cc-pVTZ) of Kendall et al.31 The one-body calculations
were performed with in-house Python programs interfaced
to the Molpro program package.32

2.2. Cluster Structures. One of the main purposes of the
present work is to analyze the accuracy of the one-body
energy decomposition scheme for predicting the absorption
spectra of large water clusters. Since the optimization of very
large clusters with ab initio methods is not affordable, we
have performed calculations with the polarizable molecular
mechanics potential AMOEBA.33 The choice of this potential
was driven by previous works on the properties of water
clusters and liquid water that supports the reliability of the
model. It should be observed that the force field has been
mainly parametrized for reproducing the structure, energetics,
and/or vibrational properties of the water monomer, dimer,
and small water clusters. The successful applications of the
AMOEBA potential to describe both the gas and condensed
phases are basically related to the explicit inclusion of
polarization effects, which favors transferability to different
environments and thermodynamic conditions.

In order to discuss the accuracy of the AMOEBA potential
for generating the structure of water clusters, comparison
was made with ab initio structures. The use of this force
field for the optimization of water clusters has been already
tested for a few conformations of clusters ranging up to the
hexamer. Further information can be found in ref 33. In this
section we reevaluate the potential, taking special care to
the evolution of its performance with increasing cluster size.

For (H2O)N (with N ) 4-10), three structures were chosen
and optimized at the local second-order Møller-Plesset
perturbation (LMP2) level of theory.34 The basis set used
was the Dunning cc-pVTZ basis set.35 Previous calculations
showed that the use of diffuse functions has little impact on
the optimized structures. Up to the octamer, the starting
cluster geometries were taken from ref 20. The clusters with
9 and 10 water molecules were optimized from starting
structures taken from Monte Carlo simulations.36 The LMP2
structures were then reoptimized with the AMOEBA poten-
tial, without any constraints, to an rms gradient per atom of
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0.0001 kcal/mol/Å. All molecular mechanics calculations
were carried out with the TINKER program.37

When the AMOEBA and LMP2/cc-pVTZ results are
compared, the energetic ordering between different conform-
ers is kept in all but two cases. The maximum deviation in
the relative energies as a function of the cluster size is plotted
in Figure 1. The results were also compared by superposing
the optimized structures, based on mass-weighted coordi-
nates, and computing the rms distance between all atoms.
The average values are plotted in the same figure. Both
analyses confirm the good performance of the potential in
the optimization of small-sized water clusters. The rms
distance obtained from superposing the two sets of structures
is particularly small. The energy difference is somewhat
harder to analyze since there are large fluctuations, but seem
to point to a maximum error around 2-3 kcal/mol. All of
these results seem to validate the use of the force field in
sampling and optimization of large water cluster structures.
In all of the following sections, and for consistency, only
AMOEBA-optimized structures will be used.

3. Results and Discussion

3.1. Water Dimer. As a first test, calculations were
performed on the water dimer, treating each monomer
sequentially while representing the other molecule with a
different embedding scheme. We neglect the coupling
between the excited states since the transition dipole moments
are close to perpendicular in the dimer orientation, and it
would therefore be close to zero. The embedding schemes
used were the same as in a previous work.20 We compare
results for calculations with no embedding potential (“no
embedding”), with symmetrical orthogonalization of the
monomer orbitals (with level shifting as in eq 7 in ref 20)
and a Coulomb potential representing the other monomer
(“J(0)”), with the full Hartree-Fock potential (“HF(0)”) or
the same potential iterated (“HF(1)”), and the calculation with
TIP3P charges. The results are shown in Table 1.

The set of results which are in closest agreement to the
full calculation are obtained with a simple TIP3P point charge

embedding. This might seem at first surprising, but it should
be noted that introduction of the accurate Coulomb or full
Hartree-Fock potentials necessitates the use of level-shift
operators which essentially freeze the surroundings of a given
monomer.20 The frozen surroundings, in turn, will lead to
an upward shift of both ground and excited states, but more
so for the excited state since it is less localized (cf. below).
The TIP3P results seem to agree well with the full calculation
by neglecting the Pauli repulsion of the surroundings and a
rather fortunate error cancellation between the lack of
exchange contributions and an approximate description of
Coulomb effects. The only way to improve on the results
with a Fock potential embedding would be to use different
frozen surroundings for the ground and the excited state.

3.2. Water Tetramers and Pentamers. In order to
validate our approach to the computation of the first
absorption band of water, we tested our method in some
smaller clusters, where it is still possible to apply the full
quantum treatment. We first look at water tetramers, using
AMOEBA structures taken from section 2.2.

In Table 2 we report the first four excitation energies,
computed in a full EOM-CCSD calculation or with the use
of a one-body approximation. In the latter, we considered
two cases. In the first set we considered the off-diagonal
elements of the excitonic states Hamiltonian to be zero. This
amounts to neglecting the coupling between the excited states
and simply taking the excitation energies from the one-body
calculation. In the second set, we introduced the off-diagonal
elements and obtained the energies by diagonalization of the
matrix.

Both sets of results from the one-body approach replicate
well the EOM-CCSD estimates. However, there is a relevant
difference between the two. Neglecting the excited-states
coupling, many are degenerate due to the structural symmetry
of the cluster. We would like to point out that this error would
not be corrected by including higher-order body terms in
estimating Hii (this is further discussed in the Conclusions
section). It is an effect due to the decoupling of excitations.
By the use of the nondiagonal matrix elements, we are able
to correctly reproduce the mixing of states which leads to a
lift of the degeneracy. The results with diagonalization of
the Hamiltonian are on the average closer to the full EOM-
CCSD values (the error is halved in cases where the simple
one-body approach has a significant deviation). The largest
deviation is around 0.07 eV, well below the error estimate
of the full method.

In order to confirm that the diagonalization procedure does
correctly mix the one-body excitonic states (as defined in
eq 1), we have examined the eigenvectors of the solutions

Figure 1. Largest deviations in energy differences of opti-
mized cluster geometries with LMP2/cc-pVTZ and the AMOEBA
potential (∆∆EMAX in kcal/mol) and the average root-mean-
square distance (average rmsd in angstroms). Three con-
formers have been used for each point.

Table 1. Excitation Energies (in eV) for the
AMOEBA-Optimized Water Dimer, Using Different
Embedding Schemes

monomer 1 monomer 2

no embedding 7.587 7.588
J(0) 7.817 8.079
HF(0) 7.734 8.100
HF(1) 7.669 8.152
TIP3P 7.613 8.015
full 7.571 8.018
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for the “cage” tetramer. These allow us to identify the
molecules which mostly contribute to a given excited state.
We compare these findings to a EOM-CCSD calculation
using Pipek-Mezey localized orbitals38 in the occupied
space. By considering the largest coefficients (above 0.1),
we calculated their weight in the excitation, labeling each
coefficient according to the occupied orbital from which the
excitation is made. Results are shown in Table 3.

Table 3 shows a strong agreement between the weights
computed with localized orbitals and the ones derived from
the transition dipole moments. The first two states are a
combination of the individual excitations of molecules 3 and
4 (which in Table 2 are shown to give degenerate one-body
excited states 7.933 eV above the ground state). The
neighbors only contribute marginally to these states. The
other higher-energy states are almost pure one-body states.
The differences in the relative weights are relatively small;
the largest difference is found in the two first excitations,
where our analysis somewhat overestimates the contribution
of molecules 3 and 4. Also, although the transition dipole
interaction gives no contribution from molecule 2 to the
highest-energy excitation, the EOM-CCSD coefficients give
a balanced weight for the “spectrator” molecules. But even
with these small discrepancies, there is a general agreement.
The results for the other tetramers were similar and encourage
us to make further use of this analysis to study the local (or
delocalized) character of the excitations in larger clusters.
Also, if the states are local (with a sparse eigenvector), we
may be able to identify the region where the excitation takes
place.

As a further test to our approach, we also computed the
spectra for the water pentamers. The structures, optimized
with the AMOEBA force field as detailed in section 2.2, are
shown in Figure 2. One structure of particular interest is the
one labeled “4coord”, where a central water molecule is
hydrogen-bonded to four neighbors (two times as acceptor
and as a donor). This is the conformer which most closely
resembles the liquid structure of water and therefore will
become of greater relevance as one increases the cluster size.

The results for the three conformers of the water pentamer
are shown in Table 4. Overall, the results are quite similar
to the ones obtained for the tetramers. Except for the highest
excitation energy of the “tetra + 1” conformer, which shows
a 0.14 eV deviation from the full result, all other values have
errors well below 0.10 eV (the average absolute deviation
is 0.03 eV). Another fault should, however, be noted.
Contrary to the tetramers, the energetic ordering of the
excitations (comparing full results to the one-body ap-
proximation) is not preserved. In Table 4, we chose to order
the excitations according to the weight analysis, and not by
the energies. In some cases, where the excitations are near-
lying, the ordering had to be inverted. This happens for the
third and fourth excitations of the “ring” conformer and for
the second and third excitations of “tetra + 1” and “4coord”
conformers. Although undesirable, such a problem should
be expected due to the small differences between the energies
of these conformers and also by the simplified treatment we
opted to use, by limiting the results to one-body terms.
Inspecting the relative weights of each molecule in the
excitations, one concludes that the estimates agree better in
the case of localized excitations. In the delocalized cases,
our results tend to underestimate delocalization effects. This
is particularly so when three molecules have a significant
weight on the state. The one-body approximation, although
it may identify the most significant contributions, deviates

Table 2. First Excitation Energies (in eV) for Three Selected Water Tetramer Clusters

ring 1 ring 2 cage

full 1B (Hij ) 0) 1B (Hij * 0) full 1B (Hij ) 0) 1B (Hij * 0) full 1B (Hij ) 0) 1B (Hij * 0)

8.094 8.103 8.081 7.937 8.040 7.990 7.908 7.933 7.908
8.094 8.103 8.081 7.942 8.040 8.019 7.939 7.933 7.947
8.102 8.103 8.114 8.108 8.057 8.083 8.203 8.264 8.270
8.117 8.103 8.137 8.130 8.057 8.103 8.381 8.353 8.358

Table 3. Relative Weights of Each Monomer for a Given
Excitation (Given in Percent)a

relative weight

exc. energy molecule EOM-CCSD 1B (Hij * 0)

7.908 1 0.0 0.0
2 9.8 1.6
3 45.1 49.2
4 45.1 49.2

7.939 1 6.8 1.4
2 0.0 0.0
3 46.6 49.3
4 46.6 49.3

8.203 1 0.0 0.0
2 93.0 98.4
3 3.5 0.8
4 3.5 0.8

8.381 1 92.8 98.6
2 2.5 0.0
3 2.3 0.7
4 2.3 0.7

a The excitation energy (in eV) is taken from the full EOM-CCSD
calculation.

Figure 2. Water tetramer and pentamer structures.
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somewhat from the reference distribution. This problem
could be solved by including higher-order terms in the
coupling. For the case in study, and taking into account that
the comparison is at best qualitative, the accuracy seems to
be adequate, and suffices for an analysis of the excitonic
states character.

We now look at the error in the highest-lying excitation
of the “tetra + 1” structure. The state is localized, both in
the full and one-body results. This indicates that the problem
is not due to the coupling between states (the use of transition
dipole moments interaction) but, instead, to the description
of the one-body state. The excitation takes place at the
monomer located in the tetramer ring acting as a donor to
the external water molecule. The latter is also oriented toward
another molecule in the ring, forming a trimer ring. However,
comparison to a regular trimer ring shows that the extra
molecule is oriented unfavorably relative to the first mono-
mer. In this particular situation, the use of atom-centered
point charges could be insufficient to describe the effect of
this neighboring molecule.

3.3. Large Water Clusters (N g 10). In this section, we
apply our approach to the spectra of larger clusters, looking
into optimized structures of various sizes. We included water
clusters (H2O)N with sizes N ) 10, 20, 30, 40, 60, and 80.
In order to sample a significant conformational space, NVT
molecular dynamics simulations were carried out for each
cluster size at 250 K. The temperature was chosen so that
no significant vaporization would occur, while giving enough

energy for the system to explore different conformations.
The time step used was 1 fs, using a modified Beeman
algorithm for integration. Each system was thermalized for
50 ps, and afterward structures were sampled in 10 ps
intervals during a 1 ns production run. This sums up to a
total of 100 structures for each given size. Some of these
simulations had to be repeated (with a different starting
structure) since a water molecule would disattach from the
cluster. The selected structures were then optimized, at
the same level of theory as in the simulation, with use of
the AMOEBA potential.33 The optimization convergence
criteria was set to an rms gradient per atom of 0.0001 kcal/
mol/Å. We then performed a one-body EOM-CCSD calcula-
tion (with excitonic coupling) on each of the selected
structures, taking the first N absorption values. In order to
represent these in a suitable graphical form, we replaced each
value (or peak) by a normalized Gaussian with a variance
of 0.0025 eV-2. The results are shown in Figure 3.

Before we discuss Figure 3 in more detail, there is some
additional information that should be taken into account. The
predicted excitation energy of the AMOEBA-optimized water
monomer with EOM-CCSD/aug-cc-pVTZ is 7.6 eV. The
absorption peak of gas-phase water is around 7.4 eV.39,40

For liquid water, the first maximum of the one-photon
absorption spectrum is around 8.2 eV,41 which corresponds
to a shift of 0.8 eV. In ice, this value is about 8.7 eV, a shift
of 1.3 eV relative to the gas phase. If we consider that our
combination of methods would lead, in the limit, to the same

Table 4. Excitation Energies (in eV) and Relative Weights of Each Monomer (Given in Percent), Calculated at the
EOM-CCSD/aug-cc-pVTZ Level and Using a 1B Approximation with Coupling Terms

ring tetra + 1 4coord

molecule EOM-CCSD 1B (Hij * 0) EOM-CCSD 1B (Hij * 0) EOM-CCSD 1B (Hij * 0)

exc. energy(1) 7.915 7.950 7.870 7.925 7.990 8.044
1 60.5 40.7 0.0 0.4 78.6 48.4
2 0.0 0.7 0.0 0.4 0.0 1.0

relative weight 3 0.0 0.0 0.0 0.1 3.8 1.1
4 0.0 0.3 1.5 1.8 0.0 13.8
5 39.5 58.3 98.5 97.3 12.8 35.7

exc. energy(2) 8.078 8.030 8.089 8.130 8.032 8.065
1 10.8 40.1 0.0 3.2 2.9 9.7
2 18.0 1.2 22.7 18.6 1.5 7.4

relative weight 3 51.5 30.4 77.3 77.7 0.0 0.2
4 0.0 0.1 0.0 0.1 27.7 28.8
5 19.7 28.2 0.0 0.4 67.9 53.9

exc. energy(3) 8.090 8.078 8.115 8.098 8.054 8.061
1 4.3 16.1 1.8 0.5 0.0 0.7
2 19.4 1.0 74.1 76.6 66.1 79.0

relative weight 3 63.1 64.6 24.1 20.4 0.0 0.0
4 0.0 6.2 0.0 2.4 33.9 20.2
5 13.2 12.1 0.0 0.1 0.0 0.1

exc. energy(4) 8.096 8.063 8.281 8.288 8.081 8.078
1 2.6 0.7 96.1 95.7 11.8 40.5
2 18.1 52.8 2.0 2.4 34.8 12.6

relative weight 3 0.0 1.8 0.0 1.6 0.0 0.1
4 75.9 44.4 1.9 0.1 40.1 37.2
5 3.4 0.3 0.0 0.2 13.4 9.6

exc. energy(5) 8.110 8.097 8.437 8.294 8.630 8.591
1 10.3 2.4 2.4 0.1 0.0 0.7
2 38.2 44.3 0.0 2.0 0.0 0.0

relative weight 3 0.0 3.1 0.0 0.2 97.0 98.6
4 37.0 49.1 97.6 95.7 0.0 0.0
5 14.5 1.1 0.0 2.0 3.0 0.7
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shifts when describing the liquid and the solid water phase,
our estimates would be 8.4 and 8.9 eV for the absorption
maxima, respectively.

There are some identifiable trends as one increases the
size of the cluster. With N ) 10, one observes a broad range
of excitations between 8.0 and 8.5 eV. There is also a small
shoulder around 8.7 eV. All of the excitations are above 7.9
eV, which is expected since all of the waters will have at
least one hydrogen-bond to a neighboring molecule. As the
cluster size increases, the shoulder starts increasing, until it
becomes the dominant band with N ) 80. The value of 8.7
eV is between our estimates for the absorption maximum
(in this level of theory) of liquid water and ice. This is also
expected since the structures have been optimized, which
leads to a rigid hydrogen-bond network (just as in the case
of ice). The reason why the two values do not coincide is,
however, uncertain. Such a small difference (0.2 eV) could
be either due to the fact that EOM-CCSD predicts a different
shift than experiment, to our model, to the sampling, or even
the molecular mechanics potential used. In any case, the
agreement seems reasonable, taking into account that we are
studying clusters and the various approximations used.

The second maximum (to the red) seems to converge with
increasing cluster size at a value around 8.2-8.3 eV. The
first absorption band of water, both in the liquid and in the
ice, is known to have no structure, so this splitting must be
connected to surface effects. In order to better understand
the structure of the band, we have analyzed the eigenvectors
of the states computed for a structure of (H2O)40. Directly
inspecting the vectors, we have found that the majority of
states is significantly delocalized, with more than five
significant contributions. We will consider significant eigen-
vector elements the ones above a 0.1 threshold (thus
contributing more than 1%). The only localized states are
found on the surface of the cluster. We confirmed this
behavior in several other structures. In order to separate the
contribution of surface molecules to the total spectra, we
divided the excitations into classes. In the first group we
include excitations localized exclusively on surface waters
(looking only into the significant vector elements as defined

above) and with few significant elements (e5). The second
group includes excitations which are delocalized, but still
exclusively with surface water contributions. The third group
is built from the remaining excitations (which are all
delocalized and with significant core contributions). The
decomposition of the spectra is shown in Figure 4.

The total spectra is divided into two distinguishable bands,
one showing two maxima, the other with some structure on
the higher excitation energies end. The band of lower
excitation energies is the one extracted from the total graph
when taking into account only local excitations found on
the surface. These are, as expected, somewhat in between
the value for the monomer and the one found in bulk wa-
ter. The second maximum is mainly due to delocalized
excitations over the surface. The maxima to the blue side of
the spectra (at 8.7 eV) can be attributed to delocalized core
excitons. The shoulder, around 8.9 eV, is hard to characterize
but is also visible in the individual spectra of larger clusters.
It is mainly dominated by the contribution of the water
molecules closest to the center of mass, although it does
delocalize significantly. The largest maximum represents the
dominant character of the excitations present in the cluster.
The classification is rather crude but does give some
explanation for the clusters’ elaborate UV spectra. Perhaps
the most reliable (or even physical) classifications would be
the localized surface states and delocalized core states. To
classify the transitions in between, as done in Figure 4, is
somewhat arbitrary but is an interesting way to look at the
transition between the two regimes.

4. Conclusions

We have presented a new simple approach to the treatment
of the first excitation band of water, which can be generally
applied to very large systems. The method, by making use
of only one-body embedded excited-state calculations,
requires very little computational effort. For a system of N

Figure 3. Absorption peaks for water clusters of varying
sizes. Each peak has been replaced by a normalized Gauss-
ian (σ2 ) 0.0025 eV-2). Figure 4. Absorption profile for a (H2O)40 cluster. The spectra

is decomposed into localized states (found in the surface) and
delocalized states, with or without significant elements from
core water molecules. Each peak has been replaced by a
normalized Gaussian (σ2 ) 0.0025 eV-2).
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water molecules, one only needs to perform N monomer
calculations and diagonalize an N × N matrix. The errors
are estimated to be small, even below the ones inherent to
the high-end method we used as a benchmark in this work
(EOM-CCSD/aug-cc-pVTZ). The method was used to com-
pute and analyze the spectra of medium- to large-sized water
clusters (up to 80 water molecules). The results show that
for sizable structures, two dominant bands will be observed.
The lower energy regime will be dominated by excitonic
states of local character on the surface of the cluster. The
remaining excitations show significant delocalization, with
contributions from several different one-body states. How-
ever, the delocalization effect on the excitation energies, as
estimated by our method, is rather small.

The approach, as formulated in this work, can and should
be further improved before application to other systems. Here
we give a short account of some of the developments we
are currently pursuing. The diagonal elements of the Hamil-
tonian as well as the ground-state energy should be computed
with at least two-body contributions. As previously remarked,
the FMO method has been extended to the computation of
excitation spectra. However, it is only applicable to excita-
tions in a single molecule which is energetically well
separated from the remaining possible excitations in the
system. This is mainly due to difficulties in defining the
excitations as belonging to a given molecule when computing
two-body terms. At the one-body level, this problem is only
partly avoided. Although all excitations are strictly localized,
close energy-lying states may still swap, raising serious
problems in the use of the many-body expansion. This was
not a serious issue in this study since the second excitation
is about 2 eV higher in energy.

The use of local occupied spaces can alleviate these
problems. One possibility is to restrict the coefficients of a
given excited state by grouping molecular orbitals according
to the monomers where their main centers of charge are
found. This would be equivalent to the use of local
correlation domains.30,42 The other possibility is to analyze
the excited-state coefficients and derive monomer weights.
Both alternatives could allow the inclusion of two-body
terms. However, other problems remain to be solved at this
level. A balanced virtual space has to be used in order to
avoid inconsistencies in the computation of the one- and two-
body terms. Preliminary calculations show that this is the
main obstacle to a well-defined and convergent expansion.
On the other hand, if the two-body terms are added, the
correction terms introduced in eqs 3 and 7 are no longer
needed. Another advantage lies in the fact that two-body
contributions will account for polarization effects on neutral
waters due to the excitation of a neighboring molecule. As
previously discussed, this is absent in the one-body model.

Other improvements to be made are on the coupling
between excited states. The use of the transition dipole seems
to be adequate in the case studied, but the implementation
of a more general scheme should be considered in future
applications.

Acknowledgment. The authors thank Dr. Tatiana
Korona for assistance in the use of the EOM-CCSD code,
as well as Dr. Jeremy Harvey for some helpful comments

on his work. R.A.M. gratefully acknowledges a Research
Grant from Fundação para a Ciência e Tecnologia (reference
SFRH/BPD/38447/2007).

References

(1) Winter, B.; Weber, R.; Widdra, W.; Dittmar, M.; Faubel, M.;
Hertel, I. J. Phys. Chem. A 2004, 108, 2625.

(2) Winter, B.; Faubel, M. Chem. ReV. 2006, 106, 1176.

(3) Hermann, A.; Schmidt, W. G.; Schwerdtfeger, P. Phys. ReV.
Lett. 2008, 100, 207403.

(4) Estácio, S. G.; Martiniano, H. F. M. C.; do Couto, P. C.;
Cabral, B. J. C. In SolVation Effects in Molecules and
Biomolecules; Canuto, S., Ed.; Elsevier: Heidelberg, 2008;
Chapter 5, p 115.

(5) Millot, C.; Cabral, B. J. C. Chem. Phys. Lett. 2008, 460,
466.

(6) Brancato, G.; Rega, N.; Barone, V. Phys. ReV. Lett. 2008,
100, 107401.

(7) Lu, D.; Gygi, F.; Galli, G. Phys. ReV. Lett. 2008, 100, 147601.

(8) Mata, R. A.; Cabral, B.; Millot, C.; Coutinho, K.; Canuto, S.
J. Chem. Phys. 2009, 130, 014505.

(9) Xantheas, S. S. J. Chem. Phys. 1994, 100, 7523.

(10) Liu, K.; Cruzan, J. D.; Saykally, R. J. Science 1996, 271,
929.

(11) Cruzan, J. D.; Braly, L. B.; Liu, K.; Brown, M. G.; Loeser,
J. G.; Saykally, R. J. Science 1996, 271, 59.

(12) Harvey, J. N.; Jung, J. O.; Gerber, R. B. J. Chem. Phys. 1998,
109, 8747.

(13) Fredj, Y. M. E.; Harvey, J. N.; Gerber, R. B. J. Phys. Chem.
A 2004, 108, 4405.

(14) Galamba, N.; Cabral, B. J. C. J. Am. Chem. Soc. 2008, 130,
17955.

(15) Dahlke, E. E.; Truhlar, D. G. J. Chem. Theory Comput. 2007,
3, 46.

(16) Sorkin, A.; Dahlke, E. E.; Truhlar, D. G. J. Chem. Theory
Comput. 2008, 4, 683.

(17) Dahlke, E. E.; Truhlar, D. G. J. Chem. Theory Comput. 2008,
3, 46.

(18) Chiba, M.; Fedorov, D. G.; Kitaura, K. Chem. Phys. Lett.
2007, 444, 346.

(19) Chiba, M.; Fedorov, D. G.; Kitaura, K. J. Chem. Phys. 2007,
127, 104108.

(20) Mata, R. A.; Stoll, H. Chem. Phys. Lett. 2008, 465, 136.

(21) Fedorov, D. G.; Kitaura, K. J. Phys. Chem. A 2007, 111,
6904.

(22) Cui, J.; Liu, H.; Jordan, K. D. J. Phys. Chem. B 2006, 110,
18872.

(23) Kurihara, Y.; Aoki, Y.; Imamura, A. J. Chem. Phys. 1997,
107, 3569.

(24) Pomogaev, V.; Gu, F. L.; Pomogaeva, A.; Aoki, Y. Int. J.
Quantum Chem. 2009, 109, 1328.

(25) Pomogaev, V.; Pomogaeva, A.; Aoki, Y. J. Phys. Chem. A
2009, 113, 1429.

(26) Hirata, S.; Valiev, M.; Dupuis, M.; Xantheas, S. S.; Sugiki,
S.; Sekino, H. Mol. Phys. 2005, 103, 2255.

1836 J. Chem. Theory Comput., Vol. 5, No. 7, 2009 Mata et al.



(27) Chiba, M.; Fedorov, D. G.; Kitaura, K. J. Comput. Chem.
200829, 2667.

(28) Fukunaga, H.; Fedorov, D. G.; Chiba, M.; Nii, K.; Kitaura,
K. J. Phys. Chem. A 2008, 112, 10887.

(29) Nakatsuji, H.; Miyahara, T.; Fukuda, R. J. Chem. Phys. 2007,
126, 084104.

(30) Korona, T.; Werner, H.-J. J. Chem. Phys. 2003, 118, 3006–
3019.

(31) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys.
1992, 96, 6796.

(32) Werner, H.-J.; Knowles, P. J.; Lindh, R.; Manby, F. R.; Schütz,
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Abstract: We present a combined quantum mechanics and molecular mechanics (QM/MM)
method to study electronic energy transfer (EET) in condensed phases. The method introduces
a quantum mechanically based linear response (LR) scheme to describe both chromophore
electronic excitations and electronic couplings, while the environment is described through a
classical polarizable force field. Explicit treatment of the solvent electronic polarization is a key
aspect of the model, as this allows account of solvent screening effects in the coupling. The
method is tested on a model perylene diimide (PDI) dimer in water solution. We find an excellent
agreement between the QM/MM method and “exact” supermolecule calculations in which the
complete solute-solvent system is described at the QM level. In addition, the estimation of the
electronic coupling is shown to be very sensitive to the quality of the parameters used to describe
solvent polarization. Finally, we compare ensemble-averaged QM/MM results to the predictions
of the PCM-LR method, which is based on a continuum dielectric description of the solvent. We
find that both continuum and atomistic solvent models behave similarly in homogeneous media
such as water. Our findings demonstrate the potential of the method to investigate the role of
complex heterogeneous environments, e.g. proteins or nanostructured host materials, on EET.

1. Introduction

Electronic energy transfer (EET) is a fundamental nonra-
diative process involving de-excitation of a donor molecule
and concomitant electronic excitation of a nearby acceptor.1

EET is used to harvest light in photosynthesis with near-
perfect efficiency2-4 and is intrinsic to many applications
in materials and life sciences. Some examples include the
design of artificial light-harvesting antennae,5-8 the optimi-

zation of organic light-emitting diodes,9-12 and the measure-
ment of distances in biological systems.13-15

Much progress related to EET was incubated more than
50 years ago, when Förster proposed an elegant theory
relating experimental observables to the mechanisms of
EET.16 Despite the success of the Förster theory in explaining
EET dynamics in a wide variety of systems, researchers have
identified a number of situations in which such a theory can
fail.17 Non-Förster effects include the breakdown of the point
dipole approximation used to describe the electronic
coupling,18-21 distance-dependent dielectric screening ef-
fects,22,23 and the need to evaluate the spectral overlap factor
from homogeneously broadened absorption and emission
spectra and subsequently averaging over inhomogeneous, i.e.
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static, disorder.24-26 In addition, in multichromophoric
aggregates it is necessary to account for effective donor/
acceptor states shared over multiple strongly coupled
chromophores.26-28 Photosynthetic proteins represent a
paradigmatic case in which such effects are significant.
Moreover, recent experimental evidence points to the im-
portance of wavelike coherent energy transfer in such
systems, in contrast to the traditionally assumed Förster
incoherent hopping mechanism, suggesting that the protein
plays an active role in protecting electronic coherences
between the electronic states of the pigments.29,30 In this
context, a combination of both elaborate experimental and
theoretical approaches are needed in order to assess the
significance of such non-Förster effects and, in particular,
to gain fundamental insights into the role of the protein
structure and dynamics on the overall process.

In the past decade, much theoretical effort has been
directed toward the accurate prediction of electronic cou-
plings from quantum mechanical (QM) methods, thus
overcoming the point dipole approximation.18-21,31,32 The
accuracy of these approaches depends mainly on the quality
of the QM level of theory and basis set adopted.33 However,
detailed theoretical insights on the role of solvation on EET
have eluded researchers for a long time. Typically, the simple
screening factor introduced by Förster, 1/n2, where n is the
refractive index of the medium, is used. The significance of
this factor is evident, as it can reduce the EET rate by a
factor of ∼4 in typical environments.

A significant advance in the field has been the development
of a QM method to study EET between molecules in
condensed phase.31,34 This method is based on a linear
response (LR) approach (either within Hartree-Fock and
density functional theory or semiempirical approaches) and
introduces the effect of the environment in terms of the
polarizable continuum model (PCM). In the PCM model,35

the solvent is represented as a polarizable continuum medium
characterized by its macroscopic dielectric properties, whereas
the solute, located in a molecular-shaped cavity inside the
dielectric, is described at a full QM level. Such a methodol-
ogy allows for a consistent treatment of solvent effects on
both the evaluation of the excited states and the electronic
coupling and in addition properly accounts for molecular
shape, thus overcoming a fundamental limitation of Förster’s
screening factor. By applying this method, we recently
discovered that the molecular shape indeed has a strong
influence on the screening of the electronic couplings
between photosynthetic pigments, leading to an exponential
attenuation of the screening at separations less than about
20 Å.22,23

While the PCM-LR methodology is well-suited to study
EET in homogeneous solvents, the treatment of solvation in
light-harvesting proteins is more challenging. Measurements
of time-dependent fluorescence Stokes shifts36 and molecular
dynamics (MD) simulations37 have shown that polar solva-
tion dynamics in such systems are position-dependent and
highly heterogeneous. Depending on the particular protein
or protein site, for example, static dielectric permittivities
ranging from 4 to 40 have been estimated from MD
simulations.38-41 In other words, the fine-tuning of the

transition energies of the pigments that modulates the EET
pathways as well as the screening effect on the couplings
arise from different local pigment-protein interactions that
cannot be captured by a continuum model. In addition, a
continuum model directly provides ensemble-averaged quan-
tities meaning that it is unable to describe the disorder in
the transition energies and the electronic couplings due to
the fluctuating environment, which are particularly important
in the description of EET dynamics in multichromophoric
arrays.42,43

In this paper we present a new combined quantum
mechanical and molecular mechanical (QM/MM) method to
study EET that overcomes the limitations of continuum
models. In a QM/MM scheme, one part of the system (in
this case the chromophores) is fully described at the QM
level, whereas the solvent molecules or surrounding environ-
ment are described by a classical force field. QM/MM
methods have successfully been applied to describe solvent
effects on a variety of molecular properties including
solvatochromic shifts in optical spectra.44-49 The method
we present here follows the same strategy used with PCM
and it introduces a LR scheme to describe both chromophore
excitations and EET couplings, while the environment is
described through a MM force field. It is important to stress
that an explicit treatment of electronic polarization in the
environment is essential in order to account for screening
effects on EET couplings: this effect is here recovered by
using a polarizable MM force field. Below we will refer to
this method as QM/MMpol.

We validate the method by comparing the results to
“exact” calculations of the excitonic splitting in a model
perylene diimide (PDI) dimer in water solution, in which
the complete solute-solvent system is described at the QM
level. In addition, QM/MMpol results averaged over solvent
configurations sampled from MD simulations are compared
to the predictions of the PCM-LR method, showing that both
approaches are consistent and describe a similar distance-
dependent decay of the solvent screening factor. Our results
thus demonstrate the potential of the method to investigate
the role of complex heterogeneous environments on EET.

The paper is organized as follows. In Section 2 we describe
the theory underlying the method. In Section 3, we describe
the computational details of the MD simulations and the QM/
MMpol and PCM calculations. In addition, we report the
derivation of the polarizable force field used to describe water
in the QM/MMpol calculations. In Section 4, we first discuss
the validity of the QM/MMpol model by comparing the
results with exact QM supermolecule calculations of the
complete solute-solvent system. Then, we compare solvent
effects induced on transition properties as well as on the
electronic couplings as described by the QM/MMpol and
PCM-LR methods. Finally, in Section 5 we report our
conclusions and give some perspectives on the potential of
the method.

2. Methodology

2.1. Effective Hamiltonian for QM/MMpol. QM/MMpol
and PCM belong to the same family of the so-called
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“focussed models”. The most important characteristic of both
of them is in fact that the system is divided in two parts (or
layers) which are described at different level of accuracy.
The target layer (the solute plus eventually some solvent
molecules) is described at the QM level (either ab initio or
semiempirical), while the rest (the solvent) is approximated
using a MM or a continuum description. In all cases, the
formalism of in Vacuo QM molecular calculations can be
maintained if we introduce an effective Hamiltonian, Heff,
which includes an explicit term representing the solute-solvent
interaction (and the energy of the MM region in the case of
QM/MMpol). Introducing the standard Born-Oppenheimer
approximation, the solute electronic wave function will
satisfy the following equation

where H0 is the gas phase Hamiltonian of the QM solute
system, and the operator HenV introduces the coupling
between the solute and the solvent. What distinguishes
MMpol from PCM is exactly the form of the operator HenV.

In the QM/MMpol approach we adopt here, the MM
system is described by a classical polarizable force field
based on the induced dipole model. In particular, electrostatic
forces are described by atomic partial charges, whereas
polarization is explicitly treated by adding isotropic polar-
izabilities at selected points in the solvent molecules. We
thus have

and the solute-solvent interaction ĤQM/MM and MM energy
ĤMM terms are given by

where V̂(rm) and Êa
solute(ra) are the electrostatic potential and

electric field operators due to electrons and nuclei of the QM
(solute) system at the MM sites, and the indexes m (n) and
a run over the MM charges qm and induced dipoles µa

ind

located at rm and ra, respectively.
In eq 3, HQM/MM

el and HQM/MM
pol describe the interaction

between the QM system and the MM charges and induced
dipoles, respectively. On the other hand, in eq 4 HMM

el

describes the electrostatic self-energy of the MM charges,
while HMM

pol represents the polarization interaction between
such charges and the induced dipoles. We recall that the HMM

el

term enters in the effective Hamiltonian only as a constant
energetic quantity, while the HMM

pol contribution is explicitly
considered in the corresponding Fock operator because of
the explicit dependence of the induced dipoles on the QM
wave function. In addition, here we do not consider short-

range dispersion and repulsion contributions in HQM/MM and
HMM, as in most combined QM/MM methods these are
described by empirical potentials independent of the QM
electronic degrees of freedom, thus not affecting our results.

The dipoles induced on each MM polarizable site are given
by

where we have assumed a linear approximation, neglected
any contribution of magnetic character related to the total
electric field, and used an isotropic polarizability (Ra) for
each selected point in the MM part of the system. In eq 5,
Ea

solVent refers to the total solvent electric field calculated at
site a and contains a sum of contributions from the point
charges and the induced dipole moments in the MM part of
the system. Such a field (and hence the induced dipole)
depends on all other induced dipole moments in the solvent.
This means that eq 5 must be solved iteratively within each
SCF iteration. As an alternative, mutual polarization between
the dipoles can be solved through a matrix inversion
approach, where eq 5 is reformulated into a matrix equation

where the matrix B is of dimension 3NX3N, with N being
the number of polarizable sites, and the vector E collects
the electric field from the solute and the solvent permanent
charge distribution. The form of matrix B will be determined
uniquely by the position of the polarizable sites and the
polarizability values.

Equation 6 is a further direct link between QM/MMpol
and PCM; in PCM in fact the polarization of the solvent is
expressed in terms of a set of apparent point charges placed
on the surface of the molecular cavity embedding the QM
system. These apparent charges are, exactly as the MMpol
induced dipoles, determined by the electric field from the
solute (or the electrostatic potential in more recent formula-
tions of the model) calculated at the positions of the charges,
namely

As the MMpol matrix B, also K is a square matrix (the
dimension being now equal to NtsXNts, where Nts is the
number of apparent charges): it only depends on the
geometrical cavity parameters and the dielectric constant of
the solvent.

In both MMpol and PCM the addition of ĤenV to the solute
Hamiltonian automatically leads to a modification of the
solute wave function which has now to be determined by
solving the effective eq 1. This can be done using exactly
the same methods used for isolated molecules; here in
particular we shall mainly focus on the standard Self
Consistent Field (SCF) approach (either in its Hartree-Fock
or DFT formulation). Due to the presence of ĤenV the
modified SCF scheme is generally known as Self Consistent
Reaction Field (SCRF), which emphasizes the mutually
polarized solute-solvent system obtained at the end of the
SCF. Historically the term SCRF has been coined for the

Ĥeff|Ψ〉 ) (Ĥ0 + ĤenV)|Ψ〉 ) E|Ψ〉 (1)

ĤenV ) ĤQM/MM + ĤMM (2)

ĤQM/MM ) ĤQM/MM
el + ĤQM/MM

pol ) ∑
m

qmV̂(rm) -

1
2 ∑

a

µa
indÊa

solute(ra) (3)

ĤMM ) ĤMM
el + ĤMM

pol ) ∑
m

∑
n>m

qmqn

rmn
-

1
2 ∑

a

µa
ind ∑

m

qm(ra - rm)

|ra - rm|3
(4)

µa
ind ) Ra(Ea

solute + Ea
solVent{q; µind}) (5)

µind ) BE (6)

qPCM ) -Kf solute (7)
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QM/Continuum approach, but here, due the parallelism
between the two schemes, it will be used indistinctly for both.

2.2. QM/MMpol Linear Response. In the following we
develop the working expressions to include the effects of
the polarizable MM environment in a TD-DFT linear
response scheme. Its extension to the Hartree-Fock or
semiempirical level (TD-HF, CIS, or ZINDO) is straight-
forward. In this framework, the excitation energies of a
molecular system can be determined by solving50

where the matrices A and B form the Hessian of the
electronic energy, and the transition vectors (Xn Yn) cor-
respond to collective eigenmodes of the density matrix with
eigenfrequencies ωn. The Coulombic and exchange-correla-
tion (XC) kernels produce both diagonal and off-diagonal
contributions to A and B, correcting the transitions between
occupied and unoccupied levels of the ground-state potential
into the true transitions of the system. The effect of the
polarizable environment on the A and B matrices can be
included by considering the MM dipoles induced by the
density matrix associated with the transition vectors (Xn Yn).
The extension of this linear response scheme to include the
effect of the MMpol environment is analogous to the
inclusion of PCM solvent effects, which have been described
in detail in ref 51. In the present case, the electronic part of
the polarization response of the environment is represented
by a set of point dipoles induced by the appropriate density
matrix instead of a set of apparent surface charges displaced
on the cavity surface as described in the PCM model.

By using the usual convention with respect to labeling the
molecular orbitals (i.e., (i, j,...) for occupied; (a, b,...) for
virtual), the matrices A and B thus become

where εr are the orbital energies, and Kai,bj and Cai,bj
pol are the

coupling matrix and the polarizable MM matrix, respectively

and gxc is the exchange eventually plus correlation (if a DFT
description is used) kernel. In eq 11 the k index runs on the
total number of polarizable MM sites. We note that for CIS
and ZINDO the whole matrix B is neglected, and for ZINDO
the xc terms in eq 10 become zero.

2.3. Electronic Energy Transfer Coupling. We begin
by considering two solvated chromophores, A and D, with a
common resonance frequency, ω0, when not interacting.
When the interaction is turned on, their respective transitions

are no longer degenerate. Instead, two distinct transition
frequencies ω+ and ω- appear, and the excited states become
delocalized over the two monomers. The splitting between
these defines the energy transfer coupling, V

Such a splitting can be evaluated by computing the
excitation energies of the DxA system through a TD-DFT
scheme, as shown in the previous section. This procedure
to estimate electronic couplings is known as the “supermol-
ecule” approach.

An approximate solution to eq 12, however, can be
obtained by introducing a perturbative approach which
considers the D/A interaction as a perturbation and defines
the zero-order resulting eigenvectors, (X+ Y+) and (X- Y-),
as linear combinations of the unperturbed Kohn-Sham
orbitals of the isolated D and A systems.52 In analogy to the
PCM-LR method for EET,31 this approximation allows the
estimation of the splitting and the corresponding coupling
from the transition densities calculated for the noninteracting
D and A. To first order, the electronic coupling, V, is obtained
as a sum of two terms

where FD
T and FA

T indicate transition densities of the solvated
D and A, respectively, in the absence of their interaction.

In eq 13, Vs describes a chromophore-chromophore
Coulomb and exchange-correlation interaction corrected by
an overlap contribution. This term is the only one present in
vacuum but can be significantly modified upon solvation due
to changes induced by the environment in the transition
densities, such effect in general leading to an enhancement
of the coupling.23 On the other hand, Vexplicit describes the
interaction between D and A mediated by the polarizable
environment. This contribution typically reduces, i.e. screens,
the overall interaction and is given by the interaction between
FA

T and the MM dipoles induced by FD
T (the same result is

obtained by exchanging A with D as the term is symmetric
with respect to the transition densities). As introduced in our
previous studies,22,23 we can now define the solvent screening
factor as

which can be directly compared to the s ) 1/n2 factor used
in Förster’s model.

Finally, we note that in the case of an asymmetric system,
where the transition energies ωD and ωA of the noninteracting
monomers are not equal, such asymmetry has to be taken

( A B
B* A* )(Xn

Yn
) ) ωn(1 0

0 -1 )(Xn

Yn
) (8)

Aai,bj ) δabδij(εa - εi) + Kai,bj + Cai,bj
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pol (9)

Kai,bj ) ∫ dr∫ dr′φi(r′)φa*(r′)( 1
|r′-r|

+

gxc(r′, r))φj(r)φb*(r) (10)

Cai,bj
pol ) -∑

k
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(rk - r)

|rk - r|3)µk
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(11)
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2
(12)

V ) Vs + Vexplicit (13)
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T*(r′)( 1
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T (r) -

ω0 ∫ drFA
T*(r)FD

T (r) (14)
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(∫ drFA
T*(r)
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ind(FD

T ) (15)

s ) V
Vs
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into account when deriving the coupling from the energy
splitting. This case is relevant for the “supermolecule”
calculations we present in Section 4.1. The corresponding
expression can be derived from the secular determinant
describing Frenkel excitons by considering two-level
chromophores53

It is obvious that for identical ωD)ωA we recover the initial
expression, eq 12. The contribution of other electronic states
to the splitting may not be neglected, but this problem is
minimized in the case of nearly identical PDI molecules as
considered in this work, where the asymmetry arises only
from slightly different local interactions with the solvent.

3. Computational Details

3.1. Molecular Dynamics Simulations. The systems
made of two PDI stacked molecules placed in parallel
orientation (see Figure 1) at a distance of 3.5 and 7.0 Å
(hereafter named mod35 and mod70, respectively) were
inserted in rectangular parallelepiped boxes and solvated with
polarizable POL3 water molecules54 removing those waters
falling within 1.5 Å from the adducts. All simulations were
performed using the AMBER9 package with the general
amber force field (GAFF)55 to describe the solute. Before
production simulations were started, the cell size for both
adducts was adjusted in a series of minimizations and short
NVT molecular dynamics simulation runs in order to achieve
the correct density of the water molecules filling the
simulation box. The final box dimensions and the corre-
sponding water molecules were 37.4 × 28.4 × 27.4 Å3 (937
waters) and 37.0 × 28.4 × 30.2 Å3 (1055 waters) for mod35
and mod70, respectively.

Then pre-equilibration in the NVT ensemble was per-
formed first at high temperature (T ) 600 K), in order to
randomize water positions, and then at lower temperature
(T ) 298 K). The Andersen temperature coupling scheme56

with a relaxation time of 0.4 ps was employed. The solute
was kept fixed at the initial geometry during all the
simulations. The time step was set to 1 fs. Periodic boundary
conditions were applied, and the particle mesh Ewald
method57 was used to deal with electrostatic forces. Starting
from the last obtained equilibrium configuration, production
runs were performed in the NVT ensemble for a total

simulation time of 2 ns. Configurations were saved every
picosecond for subsequent QM and QM/MMpol calculations.
In particular, QM/MM results presented on Section 4.2
correspond to 100 structures saved every 20 ps, which we
found to be enough to obtain converged results.

3.2. Definition and Determination of Partial Atomic
Charges and Distributed Polarizabilities Used in QM/
MMpol Calculations. As described in the previous section,
MD simulations were performed adopting the polarizable
POL3 water model.54 While this model has been optimized
to reproduce bulk structural properties of water, it substan-
tially underestimates the water polarizability (see ref 58 for
a detailed discussion). It is therefore not adequate to study
electronic properties, so we derived new sets of partial atomic
charges and distributed polarizabilities to be used in the QM/
MMpol calculations. In particular, the distributed atomic
dipole-dipole polarizabilities were calculated using the
LoProp59 approach as implemented in the Molcas60 program,
whereas the atomic charges were fitted to the electrostatic
potential following the ESP method implemented in the
GAUSSIAN package.61 The calculations were performed at
either the level of Hartree-Fock or DFT employing the
B3LYP density functional. The basis set used were either
the 6-31G(d) or the aug-cc-pVTZ. However, for the LoProp
to be properly defined, these basis sets were first transformed
into the atomic natural orbital form by a linear transformation
which does not affect the orbital optimization. The expansion
points used for water were either (i) at the atomic nuclei or
(ii) at the atomic nuclei and the bond midpoints. However,
test calculations indicated that the effect of the local
properties was equally described using either approaches,
and since the number of polarizable sites is reduced by
expanding only at the atomic nuclei, this approach was taken
by us in the final and reported calculations. In all property
calculations a single water monomer at the POL3 geometry
was considered. This means that intramolecular polarization
is included automatically in the derived force field parameters
and the multipole-induced dipole, and, in the QM/MMpol
calculations, induced dipole-induced dipole interactions are
thereby only explicitly considered between different water
molecules. In this way only intermolecular distances are
relevant, and damping functions related to the electric field
were therefore not considered. In addition, the induced
dipoles were in the QM/MMpol calculations solved by a
matrix inversion procedure, as indicated by eq 6, and no
artificially large water induced dipoles were observed. The
sets of atomic charges and isotropic polarizabilities (in atomic
units) obtained were as follows: i) HF/6-31G(d): RO ) 2.94,
RH ) 1.18, qO )-0.78, qH ) 0.39; ii) B3LYP/aug-cc-pVTZ:
RO ) 5.74, RH ) 2.31, qO ) -0.64, qH ) 0.32. We note
that the HF/6-31G(d) set of parameters is very similar to
the POL3 water model, and test calculations showed very
similar results using one or the other. However, we preferred
to adopt the HF set in order to perform a fair comparison to
full QM CIS/6-31G(d) calculations, as described below. All
QM/MMpol calculations were performed in a locally modi-
fied version of Gaussian.

3.3. PCM Calculations. The only parameters needed in
the PCM model are the positions and radii of the spheres

Figure 1. Structure of the perylene diimide (PDI) dimer
considered in this work. Two interchromophoric distances
(R)3.5 and R)7.0 Å) corresponding to a face-to-face orienta-
tion were considered.

V ) 1
2√(ω+ - ω-)2 - (ωD - ωA)2 (17)
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determining the cavity embedding the molecule and the
environment optical (εopt) and static (ε0) permittivities. PCM
cavities have been constructed by applying the united atom
topological model and the atomic radii of the UFF62 force
field as implemented in the GAUSSIAN 03 code.61 Transi-
tion energies, transition densities, and electronic couplings
have been obtained by considering a single cavity enclosing
the D/A pair for the 3.5 Å interchromophoric distance and
two distinct cavities (one for each chromophore) for the 7.0
Å distance. As here the PCM has to mimic water, we have
used the permittivities experimentally known for water,
namely εopt ) 1.776 and ε0 ) 78.39.

4. Results

4.1. Comparison between QM/MMpol and Full QM
Supermolecule Calculations. In this section, we validate
the QM/MMpol model by comparison with exact supermol-
ecule calculations of the complete solute-solvent system
described at a full quantum-mechanical level. Such full QM
calculations are computationally very expensive, so we limit
the analysis to a single solute-solvent configuration extracted
from the MD simulations. This is in contrast to the ensemble
averaged quantitities that we will present in the next section.
Moreover, even for a single snapshot one must include a
very large number of solvent molecules in order to get
converged results due to the long-range nature of electrostatic
interactions. For the PDI dimer in water, test calculations
indicate that convergence below 1% error on electronic
couplings and solvent screening factors is achieved by
including the water molecules located inside a hypothetical
sphere of cutoff radius of ∼19 Å from the center of the
dimer; this corresponds to ∼800 water molecules. We also
note that the convergence is faster for transition energies and
dipoles. Due to the high computational cost of the full QM
calculations, for this first part of the analysis we have to use
smaller cutoff values (in the range 7-11 Å).

For the same reason, MMpol and full QM calculations
are performed with a single level of theory (CIS/6-31G(d)),
whereas in the next section ZINDO and time-dependent
density functional theory (TD-DFT) results will also be
presented. The main reason for choosing CIS instead of
TDDFT is related to the problem of the large number of
artificial low-lying charge-transfer states that the surrounding
waters introduced in full QM TD-DFT calculations. Such a
problem arises from the well-known deficiencies of most of
the present exchange-correlation functionals63 and strongly
complicates the determination of the dimer states of interest.
In contrast, at the CIS level, the states of interest are the
first two excited states.

As already noted in the Introduction, a proper description
of electronic polarization is crucial in order to describe the
effect of the environment on the electronic coupling. It is
well-known that extended basis sets are needed in QM
methods in order to properly describe polarization. Again,
the cost of the full QM calculations limits us to use a split-
valence 6-31G(d) basis set, which is expected to recover only
part of the polarization effect on the coupling. In order to
be consistent in the treatment of polarization in the full QM

and the QM/MMpol calculations, we have thus developed a
MM polarizable force-field of water derived from HF/6-
31G(d) calculations, as described in Section 3.2. This allows
us to perform a fair and consistent comparison between the
MM and QM descriptions of the environment. We are
however aware of the deficient treatment of polarization
effects at this level of theory; this is clearly illustrated by
the fact that the experimental polarizability of water is
approximately two times the value predicted at the HF/6-
31G(d) level. Thus, we have also developed an accurate force
field of water from B3LYP/aug-cc-pVTZ calculations, which
in turn provides a set of atomic polarizabilities that accurately
describe the experimental polarizability of water.

In Table 1 we show the results obtained from the full QM
CIS/6-31G(d) calculations as well as the perturbative cou-
plings obtained from CIS/6-31G(d)/MMpol calculations by
adopting the two different polarizable force fields. The
calculations have been performed for a dimer at an inter-
chromophoric distance of 7.0 Å, because, at this distance,
solvent screening effects are expected to be more significant
than at smaller separations. Full QM couplings are derived
from the splitting of the dimer excited states corrected by
the mismatch in the donor-acceptor energies, as indicated
by eq 17. This implies a QM calculation on the complete
dimer-solvent system to obtain ω+ and ω- as well as two
calculations on the donor-solvent (acceptor-solvent) system,
where the other chromophore has been removed, in order to
estimate ωD (ωA).

The computed couplings in Table 1 clearly show than
when a consistent treatment of polarization is used in the
QM and MM descriptions through the HF-derived force field,
the MMpol model accurately reproduces solvent effects on
the coupling, with error in the electronic coupling being
always <3%, which corresponds to <15 cm-1. Such behavior

Table 1. CIS/6-31G(d) Electronic Coupling and Solvent
Screening Factors Calculated with the Perturbative
QM/MMpol Model and from Exact Supermolecule
Calculations of the Full QM Solute-Solvent Systemb

MMpol (HF/6-31G(d) derived force field)

cutoff (Å)a Vs Vexplicit V s full QM V

7 585 -5 580 0.99 569
8 590 -25 565 0.96 550
9 604 -45 560 0.93 547
10 605 -56 549 0.91 540
11 610 -70 541 0.89 534

MMpol (B3LYP/aug-cc-pVTZ derived force field)
cutoff
(Å)a Vs Vexplicit V s

full QM
V

7 599 -27 572 0.95 569
8 610 -68 542 0.89 550
9 629 -105 524 0.83 547
10 633 -126 507 0.80 540
11 639 -148 492 0.77 534

a Increasing cutoff distances correspond to the consideration of
21, 46, 80, 108, and 159 number of water molecules in the
system. b Results corresponding to an interchromophoric distance
of 7.0 Å are given as a function of the cutoff distance determining
the number of waters included in the calculation. Two different
sets of MMpol parameters (charges and atomic polarizabilities),
derived at the HF/6-31G(d) and B3LYP/aug-cc-pVTZ level, are
used to describe the MM environment. All couplings are in cm-1.
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is achieved because the QM/MMpol model seems to capture
both implicit and explicit screening effects on the coupling
in a balanced way, as illustrated in Figure 2. That is, when
the number of solvent molecules in the system is increased,
the change in the transition densities upon solvation is
reflected in a significant enhancement of the direct Coulom-
bic interaction between D/A, Vs, which passes from 585 to
610 cm-1. At the same time, however, the solvent-mediated
term goes from -5 to -70 cm-1, thus resulting in an overall
reduction or screening of the total interaction. Thus, the
MMpol model also provides physical insights on the solvent-
induced changes on the coupling, which are not possible from
the supermolecule calculations.

It is also worth mentioning that throughout the cutoff range
considered, where the number of solvent molecules is
increased from 21 to 159, the error in the estimated coupling
stays relatively constant, close to ∼10 cm-1, suggesting that
the small differences observed between the two approaches
could arise from short-range dispersion/repulsion effects
neglected in the MMpol model. In addition, we want to note
that at the distance considered here (R ) 7 Å), the differences
observed between MMpol and full QM results arise because
of the different treatment of the environment and not because
of the perturbative approach used to estimate the coupling.
This has been checked by computing the exact supermolecule
coupling also from QM/MMpol calculations, and the dif-
ferences between the exact (eq 17) and the approximate
values (eq 13) were always less than 1%.

On the other hand, the results obtained with the DFT-
derived force field illustrate the importance of accurately
describing solvent polarization in the estimation of the
coupling. As noted above, this set of atomic polarizabilities
describe a water molecular polarizability (R ) 1.53 Å3) close
to the experimental value (Rexp ) 1.44 Å3), whereas the HF-
derived set accounts for only one-half of it (R ) 0.78 Å3).
As a result, both the enhancement of the Coulombic coupling
and the screening contribution induced by the solvent are
strongly enlarged with these new polarizabilities, as reflected
in Table 1. For the largest cutoff considered, the change
involves 49 cm-1, corresponding to a 10% change in the

total coupling. Moreover, this change represents a 111%
enlargement of the solvent-mediated contribution, which
significantly modifies the solvent screening factor from s )
0.89 to 0.77. We note that the effect of the charges used to
describe water is far less significant than the set of atomic
polarizabilities. For instance, test calculations adopting the
DFT set of polarizabilities but the charges of the POL3 force
field induced only minor ∼1% changes in the total coupling.

It is also interesting to investigate the differential solva-
tochromic shifts on the donor and acceptor transition energies
obtained from a QM and MMpol descriptions of the
environment, as this has important consequences on the
localization/delocalization character of the dimer excited
states. As we consider a single solvent configuration in this
section, the slightly different solvent structure surrounding
D and A induces a mismatch in their transition energies. In
Table 2 we show the transition energies obtained from the
QM/MMpol and full QM calculations for the donor (ωD)
and acceptor (ωA) as well as the corresponding energy
difference between them (ωD - ωA). The results indicate that
the MMpol model correctly describes the lowest-energy
chromophore in all cases. In addition, the difference ωD -ωA

is reproduced reasonably well, in particular when the HF-
derived parameters consistent with the QM level of theory
are used. This is illustrated by the fact that the observed errors
in this latter case, about ∼0.01 eV, are reasonably small
compared to the absolute magnitude of the solvatochromic
shifts, which are 0.05 (0.08) eV and 0.07 (0.10) eV for the
donor (acceptor) as given by the QM/MMpol and full QM
calculations, respectively. These shifts are estimated from
the reference vacuum transition energy, equal to 3.31 eV.
The ability of the MMpol model to describe the relative fine-
tuning of the transition energies induced by different local
environments is in fact an important feature of the model,
because in multichromophoric protein systems such local
interactions can strongly modulate the EET pathways.64

4.2. Comparison between QM/MMpol and PCM. Once
the QM/MMpol approach is validated with exact QM
supermolecule results, we proceed to compare solvent effects
on both transition properties and electronic couplings as
described by the MMpol and PCM methods. In order to
explore the distance-dependence behavior of solvent screen-
ing effects, two interchromophore distances, 3.5 Å and 7 Å,
are considered. For this analysis we have used the B3LYP/
aug-cc-pVTZ set of charges and polarizabilities, which
accurately describe the aqueous polarizable environment as
discussed in the previous section. In addition, results are
averaged over 100 different solvent configurations extracted
from the MD trajectories, which we found to be enough to
obtain converged results. The standard deviation in transition
energies, dipoles, and total electronic couplings was less than
2% in all cases.

Transition energies and transition dipole moments calcu-
lated in vacuo and in aqueous solution are reported in Table
3 for both QM/MMpol and PCM models at ZINDO, CIS,
and TD-B3LYP levels. We note that due to the ensemble-
averaging, equivalent properties are obtained for D and A,
so a single set of values is reported.

Figure 2. CIS/6-31G(d) electronic couplings obtained from
full QM calculations (circles) and from QM/MMpol calculations
using the HF/6-31G(d) (diamonds) and the B3LYP/aug-cc-
pVTZ (triangles) force fields, represented as a function of the
cutoff radius determining the number of water molecules in
the system. Solid lines correspond to the total electronic
coupling, V, and dashed lines correspond to the unscreened
Coulombic contribution, Vs.
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As expected from the π-π* nature of the excitation, a
red shift is found passing from vacuum to aqueous solution
(0.21, 0.13, and 0.12 eV for ZINDO, CIS and TD-B3LYP,
respectively). Similar red shifts were obtained in a previous
study of PDI in toluene.33 The πfπ* character of the
transition also explains the transition dipole moment orienta-
tion along the main longitudinal axis of the planar structure
of the PDI, shown in Figure 1. The solvent does not affect
the orientation of the transition dipole moment but increases
its magnitude by about 10, 8, and 14% for ZINDO, CIS,
and TD-B3LYP, respectively.

In Table 4 we show the ZINDO, CIS, and TD-B3LYP
electronic couplings obtained in vacuo and in water with
either the MMpol or the PCM models. The tables report the
total value of the coupling and its two contributions, Vs and
Vexplicit (see eqs 14 and 15). We recall that Vs contains
different terms, Coulombic, exchange (eventually plus cor-
relation in the case of TD-DFT), and overlap. In all cases
overlap is negligible, whereas exchange(-correlation) terms
represent ∼5% of the total coupling in the CIS results at R
) 3.5 Å, and ∼1% in all other cases.

As we have shown in a previous study,33 TD-B3LYP tends
to underestimate the electronic coupling by about 20-25%
when compared to more accurate SAC-CI results, while
ZINDO presents a more unpredictable behavior depending
on the particular system under study. We found that ZINDO
coupling values for PDI are in good agreement with SAC-
CI values. In the same study we have also found that the
coupling values do not significantly depend on the chosen
basis set. On the basis of such findings, we have limited here
our analysis to the 6-31G(d) basis set; this in fact represents
a good compromise between accuracy and computationally
efficiency (we recall that each MMpol result implies an
average on 100 calculations).

As expected, when the solvent is introduced we observe
a net decrease of the coupling (about 25, 20, and 15% for
ZINDO, CIS, and TD-B3LYP, respectively); this is due to
the screening effect here quantified in terms of the factor s
that relates the total coupling with the unscreened Coulombic
contribution (eq 16). In addition, the solvent screening factor
s decreases in all cases when the D/A separation is increased.
At R ) 3.5 Å, in fact, the solvent cannot penetrate between
the two chromophores, and as a result the screening is
reduced. Thus, the factor s is lower for the larger distance
(0.72 and 0.67 for 3.5 and 7.0 Å, respectively for TD-B3LYP
results).

Let us now compare MMpol with PCM. Concerning
transition energies and dipole moments reported in Table 3,
MMpol and PCM show very similar behaviors. This seems
to indicate that in the present system, possible effects due
to specific short-range solute-solvent interactions (such as
hydrogen-bonding) do not significantly affect the transition
properties and that an averaged picture as the one represented
by the PCM is not only accurate enough but also realistic in
terms of the description of the main solvent effects.

Moving to the coupling values, once again MMpol
compare well with PCM values at all QM levels, with PCM
results being always slightly smaller than MMpol. This
behavior is due to larger screening contributions obtained
by PCM with respect to MMpol (the Coulombic terms are
in fact very similar in the two models). This is reflected in
the factor s which is always smaller in the PCM description,
that is, the screening effect of the solvent in PCM is always
larger than in MMpol.

In order to better appreciate these similarities between
MMpol and PCM, we have, however, to analyze some
numerical aspects. In the PCM model we have to define the
cavity embedding the molecular system; this is generally
done by defining the cavity as an envelope of spheres
centered on selected atoms. As in all continuum models,
PCM results will depend on the parameters used to define
such a cavity (in particular, the radii used for the spheres).
To check how this dependency can affect the results
presented in Table 4 we have repeated the PCM calculations
using different cavities obtained by scaling the default radii
by different factors, namely f ) 1.1, 1.2, and 1.3. The results
obtained for the coupling are reported in Table 5 (for this
analysis only ZINDO and TDDFT are presented)

By comparing the results of Tables 4 and 5, two different
effects of such a tuning of the cavity are observed at the

Table 2. CIS/6-31G(d) Donor and Acceptor Transition Energies Calculated from the QM/MMpol Model and from Full QM
Calculations of the Chromophore-Solvent Systemb

MMpol (HF force field) MMpol (B3LYP force field) full QM

cutoff (Å)a ωD ωA ωD - ωA ωD ωA ωD - ωA ωD ωA ωD -ωA

7 3.28 3.27 0.01 3.26 3.26 0.01 3.27 3.25 0.01
8 3.28 3.26 0.02 3.24 3.24 0.01 3.26 3.23 0.03
9 3.27 3.24 0.04 3.23 3.20 0.03 3.26 3.21 0.05
10 3.27 3.23 0.03 3.22 3.19 0.03 3.25 3.21 0.05
11 3.26 3.23 0.03 3.21 3.19 0.02 3.24 3.21 0.04

a Increasing cutoff distances correspond to the consideration of 21, 46, 80, 108, and 159 number of water molecules in the system.
b Results given as a function of the cutoff distance determining the number of waters included in the calculation. Two different sets of
MMpol parameters (charges and atomic polarizabilities), derived at the HF/6-31G(d) and B3LYP/aug-cc-pVTZ level, are used to describe the
MM environment. All energies are in eV.

Table 3. Transition Energies (in eV) and Transition Dipole
Moments (in Debye) for PDI in Vacuum and in Aqueous
Solution Calculated at the ZINDO, CIS/6-31G(d), and
TD-B3LYP/6-31G(d) Levels from the QM/MMpol and PCM
Methods

ZINDO CIS TD-B3LYP

∆E µT ∆E µT ∆E µT

vacuum 2.60 10.9 3.31 9.9 2.43 8.5
MMpol 2.39 12.0 3.18 10.7 2.31 9.7
PCM 2.37 12.1 3.19 10.6 2.32 9.7
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two interchromophore distances. For the distance of 3.5 Å,
the total coupling increases with the factor f, while for the
distance of 7.0 Å, the total coupling decreases when the
factor f is larger. To understand this difference we have to
recall that, for the 3.5 distance, the PCM calculations are
done with a single cavity that embeds the two monomers;
there is no solvent between the molecules. So, when the
factor f increases, both coupling terms decrease but the
screening one to a greater extent. In other words, by enlarging
the cavity there is a smaller enhancement of the Coulombic
interaction upon solvation, but the decrease of screening
effects is even greater so that the balance between both
contributions leads to a small overall increase in the coupling.
It seems that the best agreement in the total coupling between
PCM and MMpol is obtained for f equal to 1.2; however, if
we analyze the single components and the screening factor
s, the best agreement is found for f ) 1.1. On the other hand,
for the distance of 7.0 Å, we have two separated cavities
for the two monomers so we can expect that the dominant
changes at large f are in the Coulombic contribution and not
in the screening one as found for the short distance. In
addition, at this distance the solvent screening factor is
significantly less sensitive to the particular definition of the
PCM cavity through the factor f.

Finally, we discuss in some detail the computational cost
associated with the introduction of solvent effects through
the PCM and MMpol methods. At the CIS/6-31G(d) level,
the total CPU time associated with the calculation of the
coupling relative to the vacuum calculation was 1.4/3.2 (R
) 3.5 Å) and 1.5/8.6 (R ) 7.0 Å) for MMpol/PCM,
respectively. This illustrates the fact that the cost associated

with the QM/MMpol method is quite insensitive to the D-A
separation, as the number of induced dipoles considered is
kept relatively constant. In contrast, the cost associated with
the PCM calculation increases substantially when passing
to R ) 7.0 Å, because in this case two different cavities
host the chromophores, thus increasing the number of
apparent surface charges displaced on the cavity surface. This
is because in both methods, the added computational cost is
mainly originated by the matrix inversion step needed to
obtain the B and K matrices in eqs 6 and 7, respectively.
Note also that if higher QM levels of theory are used, the
relative cost added to the vacuum calculation is expected to
be smaller. We also remark that the above timings refer to
a single QM/MMpol calculation, whereas in general one has
to perform a proper ensemble-average over several solute-
solvent configurations. In this work, we considered 100
solute-solvent structures, and coupling values (transition
energies) fluctuated over a ∼40 cm-1 (∼50 meV) range in
the above-mentioned CIS calculations. Nevertheless, con-
vergence in this system was very fast, and averaging over
25 structures already gave results converged below 1 cm-1

(2 meV).

To summarize, we find that the QM/MMpol method
describes solvent effects both on transition properties and
on the coupling in a very similar way to PCM despite the
completely different description of the solvent characterizing
the two models. Moreover, it is very remarkable that the
change in the solvent screening factor when the interchro-
mophoric distance is enlarged from 3.5 Å to 7.0 Å is almost
the same as predicted by a continuum dielectric and an
explicit discrete representation of the environment, a finding
which strongly supports the distance-dependent screening
function we have recently proposed based on PCM cal-
culations.22,23

5. Conclusions and Perspectives

We have presented a novel polarizable QM/MM method to
study EET in condensed phase. The method is based on a
linear response approach, and it has been implemented at
the semiempirical (ZINDO), Hartree-Fock (CIS), and
density functional theory (TD-DFT) levels. This approach
allows an atomistic description of environment effects on
all quantities determining EET, i.e. chromophores’ transition
energies and dipoles, and on the electronic couplings. The
method has been tested on a model PDI dimer in water

Table 4. ZINDO, CIS/6-31G(d), and TD-B3LYP/6-31G(d) Electronic Couplings and the Corresponding Screening Factors s
Calculated for the PDI Dimer in Aqueous Solution from the QM/MMpol and PCM Methodsa

ZINDO CIS/6-31G(d) TD-B3LYP/6-31G(d)

Vs Vexplicit V s Vs Vexplicit V s Vs Vexplicit V s

Distance 3.5 Å
vacuum 1359 1359 1642 1642 1086 1086
MMpol 1579 -543 1036 (-24) 0.65 1805 -457 1348 (-18) 0.75 1282 -356 926 (-15) 0.72
PCM 1603 -608 994 (-27) 0.62 1813 -504 1309 (-20) 0.72 1294 -390 904 (-17) 0.69

Distance 7.0 Å
vacuum 567 567 571 571 399 399
MMpol 693 -257 436 (-23) 0.63 661 -215 446 (-22) 0.68 508 -168 340 (-15) 0.67
PCM 711 -280 431 (-24) 0.61 660 -228 432 (-24) 0.65 514 -182 332 (-17) 0.65

a The values in parentheses refer to percent variations with respect to vacuum. All couplings are in cm-1.

Table 5. PCM EET Couplings Calculated for the PDI
Dimer in Aqueous Solution at the ZINDO and TD-B3LYP/
6-31G(d) Levelsa

ZINDO TD-B3LYP/6-31G(d)

f Vs Vexplicit V s Vs Vexplicit V s

Distance 3.5 Å
1.1 1563 -544 1020 (-25) 0.65 1264 -351 913 (-16) 0.72
1.2 1534 -489 1045 (-23) 0.68 1241 -317 924 (-15) 0.74
1.3 1510 -442 1068 (-21) 0.71 1223 -288 935 (-14) 0.76

Distance 7.0 Å
1.1 688 -265 424 (-25) 0.62 499 -172 327 (-18) 0.65
1.2 670 -250 420 (-26) 0.63 487 -158 324 (-19) 0.67
1.3 656 -243 413 (-27) 0.63 476 -150 319 (-20) 0.67

a The three sets of data correspond to three different cavities
(see text for details). All couplings are in cm-1.
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solution; we have found an excellent agreement between the
QM/MMpol method and “exact” supermolecule calculations
in which the complete solute-solvent system is described
at the QM level. Our results also indicate that the estimation
of the electronic coupling is extremely sensitive to the
treatment of the solvent polarization and that an accurate
set of parameters for the polarizable force field is necessary.
On the other hand, the accuracy of the results predicted using
the PCM model are found to be very sensitive to the exact
shape and size of the molecular cavity imposing in this
respect the problem of defining the most physically correct
cavity. Finally, we have compared QM/MMpol results
averaged over solvent configurations sampled from MD
simulations to the corresponding ones obtained using the
PCM-LR method, which is based on a continuum dielectric
description of the solvent. We have shown that both
continuum and atomistic solvent models describe similar
solvent effects on EET in homogeneous media such as water.
Most notably, both approaches describe a consistent decay
of solvent screening as a function of donor-acceptor
separation. This latter finding strongly supports the empirical
distance-dependent screening function we recently derived
from PCM-LR calculations.22,23

All these results demonstrate the reliability and robustness
of the polarizable QM/MM method, and they make us
confident in its potential to investigate the role of complex
heterogeneous environments on EET, e.g. proteins or nano-
structured host materials, where a continuum description of
the environment represents an important limitation.
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Abstract: A time-dependent density functional theory (TDDFT) and the second-order ap-
proximated coupled-cluster model with the resolution of identity approximation (RICC2) studies
are reported here for some classes of squaraine derivatives. These compounds have a sharp
electronic band, ranging from the visible to near-red part of the spectrum, with an high molar
absorption coefficient. These features make them potential photosensitizers in the photodynamic
therapy of cancer (PDT), in which a light source, a photosensitizer, and molecular oxygen (3O2)
are combined to give cytotoxic singlet oxygen (1O2) as a final result in a photochemical process.
For the examined structures, the introduction of different substituents (electron donating, electron
withdrawing, or fused rings) in the parent molecule, in order to give different squaraine derivatives,
changes the maximum absorption wavelength (λmax) from 620 to 730 nm, giving a near-red
absorbing photosensitizer that can better penetrate human tissue to damage tumor cells.
Theoretical results, obtained from both TDDFT/PBE0 and RICC2, are able to reproduce
qualitatively the substitution effect on λmax, resulting in a useful tool for testing different structure
modifications and, in general, for the molecular design of PDT photosensitizers. Calculated
vertical excitation energies (singlet-singlet transitions) generally agree with experimental data
within 0.3 eV. The singlet oxygen generation ability of these compounds requires that their triplet
energy, for a type II reaction mechanism, should be greater than 0.98 eV. Theoretical triplet
energies from the RICC2 method suggests that this requisite is fulfilled for all compounds, though
the results are generally overestimated with respect to experiment by 0.7 eV, whereas TDDFT/
PBE0 triplet energies, which are underestimated within 0.2 eV in few cases, lie close to the
above-mentioned limit and can be considered suitable for PDT applications.

1. Introduction

Squaraine dyes are a class of organic compounds derived
from the 1,3-condensation reaction between squaric acid and
electron-rich compounds and are characterized by a sharp
and intense electronic absorption band in the near-red part
of the visible region (600-700 nm).1,2 Recently, these
compounds have been investigated for use in many research

areas, for example, technological applications, such as dye-
sensitized solar cells,3 optical storage devices,4 and fluores-
cent probes for detecting metal ions5,6 and in photosensitizer
drugs in photodynamic therapy of cancer (PDT).7-9 This
latter application is a noninvasive medicine treatment for
different tumoral diseases, like skin or bladder cancer, or
for psoriasis and age-related macular degeneration.10-14 The
basic principle of PDT is given by an appropriate combina-
tion of a light source, a chemical dose containing photosen-
sitizer molecules and dioxygen, that is largely present in the
human cell environment and can promote selective cellular
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damage through irradiation.15 There are two reaction mech-
anisms through which the photosensitizer drug can produce
a cytotoxic effect against cancer cells.16-19 The first pathway,
the so-called type I mechanism, involves radical oxygen
species generated, for example, from an electron transfer
between a photosensitizer in an excited state and an organic
substrate followed by the interaction with dioxygen. In the
second mechanism, or type II mechanism, the photosensitizer
is promoted by irradiation to its first singlet excited state
(S1) and then a fast depletion from this state, via an
intersystem spin crossing decay, to the first excited triplet
state (T1) occurs. An energy transfer process can occur
between the photosensitizer T1 state and ground-state mo-
lecular oxygen (3O2) leading to the formation of singlet
molecular oxygen (1O2), which represents the final cytotoxic
agent.20 One of the main features for an optimal molecule
to act as a type II PDT drug is the presence of an intense
electronic absorption band in its spectrum, falling inside the
therapeutic window (600-900 nm), where tissue penetration
by light is greater. This goal is usually achieved by further
extending the electronic delocalization of π-molecular sys-
tems and/or by introducing suitable functional groups in order
to reduce the HOMO-LUMO energy gap and shifting the
electronic absorption band in the near-red part of the visible
spectrum.21 On the other hand, the efficiency of the inter-
system spin crossing mechanism is enhanced by the presence
of heavy atoms, for example, bromine or transition metals,
that as a result of spin-orbit effects increase the triplet
quantum yield. Moreover, other important experimental
factors affect the efficiency of a PDT photosensitizer such
as high singlet oxygen quantum yield, long triplet state
lifetime, and water solubility, as they have to work in
biological systems, low dark toxicity, and preferential
localization in the tumoral tissue.15 Photosensitizers, currently
investigated for PDT applications, belong mainly to the class
of porphyrin-like systems (e.g., expanded porphyrins, ph-
thalocyanine, and porphycene derivatives)22 or, in part, to
nonporphyrin systems (e.g., psoralens, and phenothiazines
dyes).23 Photofrin, a porphyrin derivative, has been approved
in many countries for the treatment of early stage lung
cancer.24,25 Currently, other polypyrrolic macrocycles as
lutetium texaphyrin (Lutex),26 an expanded metal porphyrin-
like molecule, or a benzoporphyrin derivative (Vertepor-
phyrin)27 are in different stages of clinical trials. Recently,
many studies have regarded the synthesis and photochemical
characterization of new nonporphyrin systems for PDT
application. Some examples are given by difluoro-boron(III)
dipyrromethenes,28,29 green perylenediimides,30 and squaraine
dyes.31 Previous works regarding the synthesis, photophysical
properties, and in vitro biological studies of halogenated
(brominated and iodinated) squaraine dyes by Ramaiah et
al. proved the DNA damage through singlet oxygen genera-
tion and that it takes place, for the nonhalogenated form,
through the type I mechanism.32 For these compounds, which
exist in solution as either neutral or protonated forms
depending on the pH, the maximum absorbance wavelength
falls in the range of 500-600 nm. Moreover, the influence
of heavy atom on singlet oxygen generation has been studied
also, for example, in works concerning squarilium cyanine

dyes containing sulfur and selenium33 or in iodinated
squaraine-rotaxanes derivatives.34 In this theoretical work
we will focus our attention on two series of symmetrical
squaraine derivatives (Scheme 1 and 2), synthesized in the
past few years by Bonnett et al.35 and Beverina et al.36 These
compounds have been specifically designed to further red-
shift the maximum absorption wavelength by the addition
of different functional groups and to increase the solubility
in water.36 Structures and electronic spectra of these two
series of compounds have been calculated by means of
density functional theory (DFT) and its time-dependent
formulation (TDDFT)37 as well as by the second-order
approximated coupled-cluster model with the resolution of
identity approximation (RICC2).38 The main aim of this work
was to reproduce the electronic band changes as a function
of the substituent groups and to evaluate the triplet energy
of each molecule, which is a basic requirement in order to
consider it as a type-II PDT photosensitizer.

2. Computational Details

The TURBOMOLE V5.10 software package has been used
for the TDDFT and RICC2 calculations.39 Geometry opti-
mizations, without imposing symmetry constraints, as well
as vibrational frequency analysis were carried out at the
density functional level of theory in conjunction with the
nonempirical PBE0 hybrid functional that adds up a fixed
amount of Hartree-Fock exchange energy (25%) to the
gradient corrected PBE exchange correlation functional.40,41

The split valence basis set plus polarization functions (SVP)
of Ahlrichs et al.42 was used for all atoms for the structure
optimizations and vibrational frequency analysis. Vertical
excitation energies were calculated by means of two different
methodologies: time-dependent density functional linear
response theory (TD-DFRT)38,43 and RI-CC2.38,44,45 In both
cases, singlet and triplet vertical transitions for each molecule
were obtained starting from the PBE0/SVP optimized

Scheme 1. Two-Dimensional Plot for Structures 1a-e, 2,
and 3a-b
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structures. In order to assess the influence of the chosen basis
set upon excitation energies for TD-DFT calculations,
different quality basis sets, with an increasing number of
basis functions, were initially tested on molecule 6. For this
aim the following basis sets were employed: split valence
basis sets without and with polarization functions on
hydrogen atoms (SV(P) and SVP),42 double- and triple-�
valence basis set plus one (DZP and TZVP)46 and two
polarization functions for each atom (TZVPP)46 and the
correlated consistent polarized valence double and triple-�
basis sets of Dunning et al. (cc-pVDZ, cc-pVTZ).47 The latter
have been employed also with the addition of s and p diffuse
functions (aug-cc-pVDZ and aug-cc-pVTZ). The reliability
of excitation energies of organic and inorganic dyes, obtained
from the adopted split valence basis set (SVP) and hybrid
functional (PBE0), has been also proved in recent works and
yields a mean absolute error (MAE) within 0.3-0.4 eV.48-51

For RICC2 singlet and triplet excitation energy calculations,
only SVP and TZVP basis sets have been tested, since the
basis sets increasing size becomes more computationally
demanding. In this case, single point calculations were made
on PBE0/SVP optimized geometries. The influence of solvent
effects on geometries and excitation energies has been
estimated with the COSMO (conductor-like screening model)
approach,52,53 where the solute molecule is embedded within
a dielectric of permittivity ε, that represents the solvent. The
inclusion of bulk solvent effects can quantitatively improve
excitation energies, though in vacuo results qualitatively

account for the observed experimental trends. The dielectric
constant values of chloroform (ε ) 4.9, for compounds 4a-c,
5a-b and 6) and dichloromethane (ε ) 8.93, for compounds
1a-e, 2, 3a-b) and default parameters for the cavity
generation have been used for solvent calculations.

3. Results and Discussion

3.1. Structures. Two classes of squaraine derivatives have
been studied in this work. In the first series (see Scheme 1),
synthesized and characterized by Bonnett et al.,35 suitable
substituent groups are introduced in the position 2 of the
pyrrole moieties in order to red-shift the λmax with respect
to the parent molecule 1a. The reported molecules include
electron-donating phenyl (1b), phenyl substituted or naphthyl
groups (1c, 1d and 1e), styryl substituent containing a phenyl
terminal group (2a), and saturated 5- and 6-term rings
between the benzenoid and pyrrole parts (3a-b). In the
second series, we have considered the squaraine derivatives
(see Scheme 2), synthesized by Beverina et al.,36 where the
pyrrole parts were functionalized by arylhydrazone groups
(4a-c) or, as for the case of 2a, by extending the π
conjugation system with heteroaromatic rings, specifically
a pyridine molecule for 5a and a quinoline ring in 5b, and
last through an indolizine ring attached directly to the squaric
core structure (6). All reported structures (see Figures 1 and
2 in the Supporting Information) have been considered to
assume an anti geometry configuration on the basis of

Scheme 2. Two-Dimensional Plot of Structures 4a-c, 5a-b, and 6
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preliminary calculations on 1a and 6 compounds. In fact,
after geometry optimizations, this conformation resulted to
be energetically more stable than the corresponding syn
geometries, even if by few kcal/mol energy units (including
zero-point vibrational correction energies). The stabilization
is mainly due to two reasons: (a) the formation of two
intramolecular hydrogen bonds between the pyrrole hydrogen
atoms and the oxygen atoms; and (b) the steric hindrance

effects. The possible deviation from planarity of all com-
pounds has been analyzed by defining three main dihedral
angles (R, �, and γ) as reported in Schemes 1 and 2. The
dihedral angle R connects the pyrrole ring to the squaric part
through the carbon-carbon bond, which showed theoretically
a partial double character (∼1.38-1.40 Å). The dihedral
angle � represents the distortion between the substituent
group at position 2 of the pyrrole ring and the ring itself or,

Figure 1. HOMO and LUMO isodensity molecular surfaces and energy level diagram for 1a-e, 2 and 3a-b.

Figure 2. HOMO and LUMO isodensity molecular surfaces and energy level diagram for 4a-c, 5a-b and 6.
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in the case of the condensed structures (3a-b and 6), the
degree of coplanarity of the fused rings. For structures 2 and
5a-b, the elongation of the electronic delocalization through
the formation of carbon-carbon or nitrogen-carbon bonds
with the presence of a terminal heteroaromatic ring gives
rise to another degree of conformational freedom represented
by the dihedral γ. The dihedral angle values (R, �, and γ)
for each molecule are summarized in Table 1. In all
compounds, the squaric core part is nearly coplanar with the
N-substituted pyrrole ring (R value is lesser than 3°). The
dihedral � angle depends on the nature of the substitution
on the pyrrole rings. For compounds 1b-e, which a phenyl
(substituted) or naphthyl ring is bound to the pyrrole one,
the deviation ranges between 13° and about 40° (Table 1),
depending on the different steric hindrance of the substituent
group. For compounds reported in Scheme 2 and compound
2, which present a chain elongation starting from the position
2 of the pyrrole ring, the � value (-N-C-C-N- or
-N-C-C-C-) denotes a planar conformation for this part
of the molecules. Condensed structures are strictly coplanar
except for compound 3b where the cyclohexenyl ring has a
� value equal to 12.4°. Further substitution along the
molecular chain, represented by the dihedral angle γ, is
relevant in the case of hindered substituent groups (4c and
5b, γ values ca. 37° and 35°) or in situations where there
are two adjacent phenyl groups, as is the case of 4a, which
has two different γ values (95° and 6°) in order to minimize
sterical repulsion between phenyl rings. The nature of the
substituent groups as well as distortion from planarity can
influence the electronic delocalization and, as a consequence,
the λmax value, as shown in the next paragraph.

3.2. Electronic Spectra. The electronic spectra of 2,4-
bis-pyrrolyl squaraine derivatives are characterized, in the
visible part of the electromagnetic spectrum, by a sharp and
intense absorption band due to the π electronic system, which
is highly delocalized. Formally the core part of these
compounds can be described by three resonance structures
with 12 π-electrons and a positive charge delocalized through
the two symmetrical moieties. For all compounds UV-vis
spectra are available;35,36 moreover, for the compounds
reported in Scheme 2, singlet oxygen quantum yield mea-
surements and two-photon spectroscopical studies were also

made.31,36 In this section, we will outline the results obtained
by TDDFT calculations of the λmax in vacuo and in solvent
environments and outline how structural changes are theo-
retically reproduced in comparison to the experimental
behavior, also using more refined methodology as coupled-
cluster methods. The basis set influence on λmax was tested
for compound 6, the results are reported in Table 2 and are
relative to PBE0 calculations. It is evident that the increasing
size of the basis set improves little the agreement with the
experimental λmax (684 nm), even by using the augmented
triple-� basis set of Dunning et al.47 In terms of eV units,
the benefit is 0.04 and is well below the TDDFT method
error deviation, which is typically within 0.4 eV.48-50 So a
good compromise between computational timings and nu-
merical reproduction of λmax can be obtained by just
employing a SVP. Similar consideration can be made for
the influence of the basis set on λmax for the RICC2
methodology. In fact, from Table 2, it is evident that with
this method the SVP basis sets also give results that differ
by about 10 nm from that obtained by using the triple-�
valence basis set. The excitation energies (in eV and nm)
and oscillator strengths for the two series of squaraine
derivatives (Scheme 1 and 2) obtained at both TDDFT and
RICC2 level of theory in vacuo and in the presence of the
solvent (TDDFT only) are reported in Table 3. All structures
showed one excitation energy in the visible region composed
mainly by a transition from the highest occupied molecular
orbital (HOMO) to the lowest unoccupied one (LUMO). We
will first analyze in vacuo TDDFT results. Considering the
compound 1a as a reference structure for the evaluation of
the λmax shift as a function of substituents, it can be noted
that the introduction of an electron-donating group (1b-e)
increases the λmax by 80-90 nm. Comparing the two isomeric
forms 1c and 1d, the latter resulted more wavelength red-
shifted by 18 nm as can be confirmed also by the experi-
mental difference between the two isomers. This different
behavior can be explained taking into account the energetic
trend and the isodensity electron density surfaces of the
HOMO (π orbital character) and LUMO (π* orbital char-
acter) orbitals (see Figure 1). The molecular orbitals con-
sidered are those mainly involved in the electronic transition
that gives rise to the maximum wavelength absorption band.

Table 1. Dihedral Angles R, �, γ, as Indicated in Schemes
1 and 2

dihedral angles

molecule R � γ

1a 0.0 - -
1b 0.2 14.4 -
1c 0.1 17.0 -
1d 0.1 13.2 -
1e 0.6 37.7 -
2 1.0 3.5 4.2
3a 0.9 0.2 -
3b 0.5 12.4 -
4a 1.5 176.1 95.2 (5.8)a

4b 1.5 179.3 5.0
4c 2.3 174.5 37.1
5a 1.1 176.1 4.9
5b 0.5 171.2 35.2
6 0.0 0.0 -

a Dihedral angles for the two phenyl groups.

Table 2. Basis Set Influence for the First Excitation Energy
∆E (eV, nm) and Oscillator Strength f of Compound 6 from
TDDFT and RICC2 Calculations

TDDFTa RICC2a exptl.b

basis set
∆E,
eV

∆E,
nm f

∆E,
eV

∆E,
nm

∆E,
eV

∆E,
nm

SV(P) 2.22 (2.08) 559 0.9762 2.08 596 1.81 684
SVP 2.22 (2.08) 559 0.9770 2.08 597
DZ 2.20 563 0.9741
DZP 2.21 560 0.9685
TZVP 2.20 564 0.9736 2.04 607
TZVPP 2.20 565 0.9579
cc-pVDZ 2.22 559 0.9635 2.08 595
cc-pVTZ 2.20 563 0.9585 2.05 605
aug-cc-pVDZ 2.19 567 0.9560 2.04 609
aug-cc-pVTZ 2.18 568 0.9548 2.02 612

a Single point calculations from PBE0/SVP optimized structures.
b In dichloromethane; from reference 36.
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The HOMO orbital for all compounds is characterized by
an high electron density in the squaric core part, while for
the LUMO orbital, electronic density is depleted from the
oxygen atoms. By viewing the HOMO and LUMO orbital
energies of 1d, both resulted destabilized with respect to 1c,
but the LUMO is less destabilized in energy than the HOMO
by ca. 0.1 eV, so λmax increases. As can also be seen in Figure
1, oxygen electronic density belonging to the m-methoxy
group in 1c is not involved in the electronic delocalization
system. Moreover, the m-methoxy substitution in 1c leaves
λmax practically unchanged in comparison to the phenyl
substituted case 1b (533 vs 531 nm), in qualitative agreement
with the experimental values (621 vs 625 nm). Going to the
next compound in Table 3, it can be seen that in 1e, the
introduction of the naphthyl substituent group on the pyrrole
ring, notwithstanding its strong electron-donating character,
decreases slightly the value of λmax (546 nm) with respect to
1d (549 nm), in qualitative agreement with the experimental
λmax trend. For 1e, the HOMO-LUMO energy gap is lower
than that of 1d by 0.07 eV, the decreased λmax could be due
to the more distorted structure (� ) 38°) which, therefore,
reduces the overlapping of the molecular orbitals and a
greater HOMO energy stabilization with respect to the
LUMO orbital energy. The elongation of the molecular chain

through a carbon-carbon double bond with a terminal phenyl
group (compound 2) increases λmax (586 nm). This fact is
consistent with the experimental red-shift evidence and the
decreasing of the HOMO-LUMO gap characterized by a
strong energy destabilization of the HOMO orbital by ca.
0.2 eV with respect to 1e analogue orbital (see Figure 2).
As for compounds of Scheme 1, the main results regarding
the first lowest excitation energy (λmax and oscillator strength)
are summarized in Table 3. For the condensed ring structures
(3a-b), theoretical λmax are both red-shifted in comparison
with the phenyl substituted form 1b with values, respectively,
of 544 and 553 nm. In particular compound 3b, containing
a six-term ring, is more red-shifted than 3a in agreement
with the experiment. However, for these condensed struc-
tures, λmax is lower in comparison to the more extended form
2, confirming that elongation is a better strategy for red-
shifting of λmax. The HOMO-LUMO energy gap trend for
3a-b also is consistent with TDDFT excitation energies and
confirmed by experiment. For the compounds just examined,
the oscillator strengths, corresponding to the spin- and dipole-
allowed electronic transition in the visible range between
0.832 (1a) and 2.368 (2), the deviation of the calculated λmax

from the experimental one has a minimum value for 1e (0.25
eV) and a maximum value for 3a (0.38 eV). Proceeding to
the second series of squaraine derivatives (see Scheme 2),
we can note some structural differences and analogies with
compounds in Scheme 1. In compounds 4a-c, the electronic
delocalization was obtained by functionalizing the pyrrole
ring by aryl- or alkyl-hydrazone groups. In this study, the
nitrogen pyrrole atoms are always attached to a methyl group,
although compound 4a was synthesized also with the group
R1 (see Scheme 1) constituted by a triethyleneglycolic chain
in order to increase water solubility. Similarly for compounds
4b and 5a-b, the latter being synthesized only in this
functionalized form, we adopted methyl groups as R1

substituents. This choice was justified by the fact that a
preliminary calculation for the evaluation of λmax of com-
pound 4a showed that its λmax is unaffected if R1 is present
as a methyl or triethyleneglicolic group, as clearly evidenced
also by experimental data. Analyzing first the squaraine
derivatives containing arylhydrazone groups (4a-c), we
noted that the highest calculated λmax (609 nm) corresponds
to compound 4a for which R1 and R2 terms are both electron-
donating phenyl groups. The presence of weak electron-
donating methyl groups in 4b gave a decreased value of λmax

(553 nm), whereas the situation represented by compound
4c, where R2 is given by an hydrogen atom and R3 by a
para-bromine substituted phenyl group, is intermediate
between that of 4a and 4b (λmax ) 593 nm). These results
reflect the order of the HOMO-LUMO energy gaps depicted
in Figure 2, the lowest energy gap (highest λmax) corresponds
to compound 4a (2.12 eV). In compounds 5a and 5b, the
electron conjugation is extended from each pyrrole ring
through a carbon-carbon double bond with, respectively, a
pyridine and a quinoline terminal group (see Scheme 2).
Experimentally the introduction of these weak electron-
withdrawing heteroaromatic groups has the effect to reduce
λmax (678 nm for 5a, 688nm for 5b) with respect to the case
of 4a, which contains strong electron-donating phenyl groups.

Table 3. Calculated Singlet Excitation Energies ∆E (eV
and nm (in parentheses)) and Oscillator Strength f for All
Studied Compoundsa

TDDFT,b

vacuum
TDDFT,b

c-pcm
RICC2,b

vacuum

molecule ∆E f ∆E f ∆E exptl.c

1a 2.73 0.832 2.78 0.909 2.61 /
(454) (445) (475)

1b 2.33 1.578 2.35 1.714 2.31 2.00
(533) (528) (537) (621)

1c 2.33 1.661 2.35 1.792 2.31 1.98
(531) (527) (537) (625)

1d 2.26 1.835 2.26 1.983 2.24 1.93
(549) (548) (552) (643)

1e 2.27 1.701 2.28 1.803 2.29 2.02
(546) (543) (542) (613)

2 2.12 2.368 2.14 2.526 2.16 1.84
(586) (580) (574) (673)

3a 2.28 1.849 2.31 1.950 2.23 1.90
(544) (537) (555) (654)

3b 2.25 1.746 2.27 1.840 2.22 1.88
(552) (546) (559) (660)

4a 2.04 2.619 2.03 2.750 2.01 1.70
(609) (611) (616) (728)

4b 2.24 2.029 2.23 2.228 2.18 1.80
(553) (556) (569) (688)

4c 2.09 2.337 2.09 2.506 2.11 1.73
(593) (593) (586) (717)

5a 2.07 2.356 2.12 2.516 2.13 1.83
(600) (586) (581) (678)

5b 2.03 2.376 2.07 2.520 2.12 1.80
(612) (600) (585) (688)

6 2.22 0.9770 2.26 1.033 2.08 1.81
(559) (549) (593) (684)

MAE 0.31 0.32 0.30

a In vacuo and solution (C-PCM) from TDDFT and in vacuo
from RICC2 calculations. The mean absolute deviation (MAE) for
excitation energies relative to TDDFT (in vacuo and solution) and
RICC2 methods are given in eV. b Single point calculations from
optimized structures at PBE0/SVP level of theory. c In chloroform
for 1a-e, 2, and 3a-b; in dichloromethane for 4a-c, 5a-b, and 6.
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From TDDFT results, we note that the relative magnitude
order and difference of λmax 5a and 5b is well reproduced,
and the maximum deviation of λmax from the experimental
data is 0.24 eV. Despite these results, by comparing
compounds 4a and 4c (containing phenyl groups) with 5a-b,
the experimental decrease of λmax is not so clearly found from
TDDFT excitation energies. Oscillator strengths of com-
pounds 4a-c and 5a-b are in the range between 2.0 and
2.6 and generally more intense than the first series of
squaraine derivatives (1a-e, 2, and 3a-b). In compound 6,
the annelated structure, resulting from the further π-delo-
calization of the pyrrole ring, gives a calculated λmax of 559
nm, which, among all examined compounds, presents the
maximum energy difference from the experimental (about
0.4 eV). In this case, RICC2 calculations (see Table 3) gives
an improved calculated λmax with respect to the experimental
value (593 vs 684 nm). The correlation of λmax with the
dihedral angle R (Scheme 2, compound 6), for both sides of
the squaric core part, has been examined in order to verify
if TDDFT deviation of λmax stems from the simultaneous
presence at room temperature of the different conformers.
The next most stable conformer was found to be the syn
conformer (2.7 kcal/mol above in energy) with λmax identical
(2.21 eV) to that of the anti conformer. The weighted
contribution of λmax to other conformers can be neglected
on the basis of their higher energy (>20 kcal/mol) with
respect to the anti energy minimum structure. For compound
6, where the π-system is more delocalized, it seems that
RICC2 method better describes the electronic transition
contribution of the double excitation character, which
completely lacks in the TDDFT method. From our calcula-
tions, the percentage weight of these transitions is about 10%.
However, in all the other cases, the difference of calculated
λmax, between TDDFT and RICC2 methods, is not so drastic,
changing from in 0.02 to 0.08 eV (absolute values). Taking
into account solvent effects through the C-PCM method,
similar consideration holds for the excitation energies (no
drastic changes in λmax), while oscillator strengths are
intensified in value (see Table 3). A quantitative assessment
of the reliability of TDDFT and RICC2 results can be made
by considering the mean absolute error (MAE) for the whole
series of studied compounds. The value of MAE is nearly
0.3 eV (Table 3), so in this case, there is not an evident
difference between the theoretical results obtained from both
methodologies.

3.3. Triplet Energies. As pointed out in the Introduction,
in oxygen-dependent type II reactions, the efficiency of a
PDT photosensitizer drug is measured by its single oxygen
quantum yield. The energy transfer from the triplet state of
the photosensitizer to the ground-state molecular oxygen, in
order to be an efficient process, needs an appropriate triplet
energy for the photosensitizer. This value should be equal
or greater to 0.98 eV, which corresponds to the experimental
triplet molecular oxygen energy (or 3Σg f

1∆g electronic
transition). For compounds 4a-c, 5a-b and 6 also have been
previously reported, a qualitative comparative study has been
reported on their ability to generate singlet oxygen, by
monitoring the time disappearance of the absorption band
at 415 nm of 1,3-diphenylisobenzofuran, which can react

with a photosensitizer dye to form an endoperoxide species.
The experimental results proved that the above-mentioned
compounds and in particular 4a and 4c (containing bromine
atoms) are able to give a singlet oxygen yield. Triplet
energies can be theoretically calculated from TDDFT and
RICC2 methodologies as triplet excitation energies referred
to the singlet ground state. As reported in the results of Table
4, the TDDFT computations indicate that all the studied
compounds have triplet energies below the limit of 0.98 eV. In
particular, in vacuo triplet energies are in the range between
0.61 (5b) and 0.95 eV (1a). Bulk solvation effects slightly
increase the triplet excitation energies by 0.02-0.08 eV. It can
be argued, from TDDFT, that only 1a-e, 3a-b, and 6
compounds lie close to the mentioned energetic gap. On the
other hand, RICC2 calculations showed that for the studied
compounds the triplet energies are between 1.13 (5a) and 1.36
eV (1a), fulfilling one of the requirements to act as a PDT drug.
In order to better understand the origin of this great discrepancy
between TDDFT and RICC2 results, we have studied a series
of molecular systems where the triplet energies have been
experimentally evaluated.54-56 The results, collected in Table
5, clearly showed that the vertical triplet energies, from RICC2
calculations, are overestimated by about 0.6-0.7 eV in com-
parison with experimental results obtained from phosphores-
cence spectra, whereas the TDDFT triplet energies, from PBE0

Table 4. Triplet Energies in Vacuo and with C-PCM
Solvation Model from TDDFT and in Vacuo from RICC2
Calculations

TD-DFTa RICC2a

molecule ∆E, vacuum ∆E, c-pcmb ∆E, vacuum

1a 0.95 1.00 1.36
1b 0.85 0.88 1.28
1c 0.86 0.89 1.28
1d 0.85 0.87 1.27
1e 0.86 0.90 1.29
2 0.69 0.72 1.18
3a 0.87 0.90 1.28
3b 0.84 0.88 1.28
4a 0.65 0.70 1.18
4b 0.69 0.72 1.18
4c 0.65 0.71 1.17
5a 0.58 0.66 1.13
5b 0.61 0.69 1.15
6 0.91 0.96 1.27

a Single point calculations from optimized structures PBE0/SVP.
b In chloroform (ε ) 4.9) for 1a-e, 2, and 3a-b; in
dichloromethane (ε ) 8.93) for 4a-c, 5a-b, and 6.

Table 5. Triplet Energies ∆ES0 - T1 (eV) for Some Aromatic
Hydrocarbons and the Free Base Porphyn (FBP) from
TDDFT (PBE0) and RICC2 Calculations in Comparison
with Experimental Values

∆ES0 - T1 (eV)

molecule PBE0a RICC2a exptl.b

benzene 3.68 4.42 3.69
naphthalene 2.65 3.35 2.65
anthracene 1.72 2.42 1.82
pyrene 2.05 2.71 2.08
FBP 1.38 2.24 1.58

a Single point calculations with TZVP basis set from PBE0/
TZVP optimized geometries. b Experimental data taken from ref
54, except for FBP from refs 55 and 56.
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calculations, are slightly underestimated, the maximum deviation
being 0.2 eV for the free base porphyn.

4. Conclusions

In this paper, the theoretical electronic spectra in the visible
region for some classes of squaraine derivatives have been
simulated by adopting two approaches: time-dependent
density functional methods (TDDFT) and coupled-cluster
model with the resolution of identity approximation (RICC2).
First, the geometrical structures corresponding to energy
minima have been examined and, in particular, their possible
conformational dihedral changes that can affect the maximum
absorption wavelength, due to more or less effective mo-
lecular orbital overlapping. For example, for naphthyl
substituted squaraine (1e), the presence of strong electron-
donating gives λmax a decreased value with respect to the
phenyl substituted counterpart, as a consequence of the dis-
tortion (about 40°) from the planarity of the rest of the
molecule. The maximum absorption wavelength shifts, as a
function of the substituent nature within each different class
of squaraine derivatives, are qualitatively well reproduced
in comparison with experimental results by the two theoreti-
cal approaches. By comparing the two theoretical approaches,
singlet excitation energies show, for both TDDFT and RICC2
results, an absolute mean error of roughly 0.3 eV. In this
case, their performance in predicting electronic spectra is
comparable. On the other hand, triplet energies calculated
by RICC2 are strongly overestimated (about 0.7 eV) with
respect to the experiment than those obtained by PBE0
calculations. All studied compounds show an absorption
electronic band that falls in the so-called therapeutic window
(550-800 nm) for PDT treatment. Notwithstanding, includ-
ing bulk solvation effects, only a few compounds (1a-e,
3a-b, and 6) have a triplet energy close to that of molecular
oxygen and, consequently, could be active as type II PDT
photosensitizers. The limits of hybrid functionals in TDDFT
are currently under investigation through the development
of new DFT functionals (so-called long-range corrected
hybrid functionals) in order to improve the accuracy of
excitation energies, in particular, for charge transfer electronic
transitions where TDDFT gives unreliable results.57-59
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sità degli Studi della Calabria and Regione Calabria (POR
Calabria 2000/2006, misura 3.16, progetto PROSICA) is
gratefully acknowledged.

Supporting Information Available: All in vacuo
optimized structures with Cartesian coordinates for all
compounds reported in Scheme 1 and 2. This material is
available free of charge via the Internet at http://pubs.acs.org.

References

(1) Schmidt, A. H. In Oxocarbons, West, R. Ed.; Academic Press:
New York, 1980; pp 1-185.

(2) Law, K. J. Chem. ReV. 1993, 93, 449–486.

(3) Yum, Jun-Ho; Walter, P.; Huber, S.; Rentsch, D.; Geiger, T.;
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Abstract: MgB2 is a superconductor constituted by alternating Mg and B planar layers: doping
of both the sublattices has been observed experimentally to destroy the outstanding supercon-
ductive properties of this simple material. In this study we present the investigation by first
principles methods at atomistic scale of the phase separation induced by aluminum doping in
the MgB2 lattice. The calculations were performed by Density Functional Theory in generalized
gradient approximation and pseudopotentials. Orthorhombic oP36 supercells derived by the
primitive hR3 MgB2 cell were built in order to simulate the aluminum-magnesium substitution
in the 0-50% composition range. The computational results explained the occurrence of a phase
separation in the Mg1-xAlxB2 system. The miscibility gap is predicted to be induced by an
order-disorder transition in the metallic sublattice at high Al concentration. Indeed at 1000 K
aluminum substitution takes place on random Mg sites for concentration up to 17% of the total
metallic sites, whereas at Al content larger than 31% the substitution is energetically more
favorable on alternated metallic layers (Mg undoped planes alternate with Mg-Al layers). The
formation of this Al-rich phase lead at 50% doping to the formation of the double omega
Mg1/2Al1/2B2 ordered lattice. From 17 to 31% the two phases, the disordered Mg1-xAlxB2 (x <
0.17) and the ordered Mg1/2+yAl1/2-yB2 (y < 0.19) lattices, coexist. This phase separation is driven
by the balance of the enthalpy and entropy contributions to the Gibbs energy. Present DFT-
GGA calculations indicate that this thermodynamically predicted suppression of the Al doping
disorder in the metallic sublattice of MgB2 occurs in parallel with the collapse of the
superconductive properties of the material.

Introduction
Magnesium diboride, MgB2, was observed to undergo a
superconductive transition at Tc ) 39 K, one of the highest
known transition temperatures for a noncopper-oxide ma-
terial.1 This finding boosted the interest in this simple
compound, and stimulated research efforts mainly focused
on the physical and thermodynamic properties (i.e., energetic
stability, thermal conductivity, elastic and electric properties,
electronic and crystal structure, e.g. refs 2 and 3) as well as
fabrication, in particular, film growth processing (e.g., ref
4).

The electronic structure of MgB2 is now well understood:
the Fermi surface consists of two three-dimensional sheets

due to the π bonding and antibonding bands and two nearly
cylindrical sheets due to the two-dimensional σ bands. Its
superconductivity properties arise from a phonon mediated
mechanism, with different coupling strengths, with the two
mentioned σ and π electronic bands, which leads to the
uncommon appearance of two distinct superconducting
gaps.5,6 In the past few years the substitution of Mg with
Al, Ca, Li and Sc, and B with C has been investigated to
understand the evolution of the pairing process (e.g., refs
7-10). The various attempts to obtain compounds with
higher Tc derived by doping from MgB2 have been up to
the present unsuccessful, suggesting that MgB2 may represent
a unique combination of events where electronic and dynamic
properties reach an extremely favorable balance.11 Moreover* Corresponding author e-mail: sergio.brutti@uniroma1.it.
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MgB2, due to its very simple crystal and electronic structure,
is even a fortunate example of a two-gap superconductor
where the effect of doping on the electronic structure can
be accurately calculated by first principles methods: this
makes the MgB2 system a typical case study.12

There is experimental evidence13-16 of a phase separation
in the Mg1-xAlxB2 system in the x)0.1-0.4 range. This
separation is apparently related to the precipitation of a
ternary Al-rich phase with a superstructure related to the
MgB2 lattice with doubled c-axis, similar to the crystalline
double-ω phase Mg0.5Al0.5B2.

17 The crystal chemistry and
its correlation with the functional properties of the substituted
MgB2 phase by aluminum and other doping atoms has been
the object of a number of computational investigations.18-23

Nevertheless a detailed interpretation at the atomistic level
of both the lattice distortion related to the phase separation
and the driving forces that lead to the establishing of this
multiphase equilibrium are still missing. This is the object
of this paper where we present the results of the investigation
by first principles methods of the lattice stability of the
Mg1-xAlxB2 (0<x<0.5) system. The electronic structure calcula-
tions have been carried out by means of Density Functional
Theory (DFT), using supercells. The goal is the analysis of the
phase separation due to the modulation of the composition of
MgB2 by Al doping. This will be characterized by considering
the lattice configurations at different doping concentrations in
order to give a structural interpretation at the atomistic level.
The driving force that, from a thermodynamic point of view,
promotes the phase separation will be analyzed in terms of free
energy by distinguishing enthalpy and entropy contributions.

Computational Method

The study of the lattice stability of the Mg1-xAlxB2 (0<x<0.5)
system has been carried out by spin unpolarized electronic
structure calculations within the density functional theory
(DFT) approach, in the generalized-gradient approximation
(GGA-PW91),24 and using pseudopotentials for core electrons.

MgB2 has an hP3 primitive cell (C32 strukturbericht
designation) with space group P6/mmm (no. 191) and Mg
and B atoms in the 1a (0 0 0) and 2d (1/3,2/3,1/2,2/3,1/3,1/2)
sites, respectively. The corresponding standard hexagonal
axes (Â1,Â2,Â3) in terms of Cartesian versors (x̂,ŷ,ẑ) are

The study of the aluminum doping has been carried out
by using the supercells approach: in particular a oP36
supercell has been derived from the primitive hP3 MgB2

lattice by the following transformation

where (Â1
*,Â2

*,Â3
*) are the novel axes derived from the primitive

vectors (Â1,Â2,Â3). The resultant supercell axes in terms of
Cartesian versors and primitive cell parameters are

Both the primitive cell and the supercell are presented in
Figure 1a and b.

In summary the orthorhombic supercell results from the
merge of 12 primitive hexagonal cells: the new periodic unit
consists of an alternated couple of metallic and boron layers.
The oP36 structure has 12 metallic sites (Figure 1c). By
following the designation outlined in Figure 1c for the
metallic sites in the oP36 lattice, the corresponding site
coordinates are as follows: (1) 0 0 0; (2) 1/2; 1/6 0; (3) 0
1/3 0; (4) 1/2; 1/2 0; (5) 0 2/3 0; (6) 1/2 5/6 0; (a) 0 0 1/2;
(b)1/2 1/6 1/2; (c) 0 1/3 1/2; (d) 1/2, 1/2, 1/2; (e) 0 2/3 1/2;
(f) 1/2, 5/6, 1/2. As a consequence 7 different compositions
in the Mg1-xAlxB2 (0<x<0.5) ternary system can be simulated
(i.e., 0, 1/12, 2/12, 3/12, 4/12, 5/12, 6/12) as well as the lattice
of the double omega Mg0.5Al0.5B2 phase (Figure 1d). The
seven intermediate compositions are obviously obtained by
substituting the necessary number of Mg atoms by Al. It is
to be noted that the number of configurations that represents
the occurring substitutions, increases as the concentration
of the doping Al increases. In the oP36 supercell, the p
aluminum and (n-p) magnesium atoms are accommodated
in n ) 12 metallic sites: the resulting number of configura-
tions is � ) (n!)/(p!(n - p)!). From a crystallographic point
of view each configuration represents an unique chemical
prototype. As a consequence at a given doping concentration

Â1 ) 1/2ax̂ - √3/2aŷ

Â2 ) 1/2ax̂ - √3/2aŷ

Â3 ) cẑ

Â1* ) Â1 - Â2

Â2* ) -3 · (Â1 - Â2)

Â2* ) -2·Â3

Â1* ) √3 · ax̂

Â2* ) -3 · aŷ

Â3* ) -2 · cẑ

Figure 1. (a) MgB2 primitive cell hP3; (b) (MgB2)12 supercell
oP36; (c) 12 Mg sites in the oP36 supercell; (d) (Mg0.5Al0.5B2)12

double omega-based structure supercell oP36.
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the number of inequivalent supercells to be simulated
becomes rather large, the configurations being 1, 12, 66, 220,
495, 792, 924, for 0, 1, 2, 3, 4, 5, 6 Al substitutions,
respectively. Symmetry considerations can lead to a reduction
of the supercells to be considered: as an example, in the case
of our oP36 supercell, the symmetry-irreducible structural
permutations, for 0, 1, 2, 3, 4 substitutions, are 1, 1, 7, 13
and 36, respectively. However, although the resulting number
of inequivalent configurations is reduced, they are still too
many to allow a complete and easy screening of all the
configurations.

On considering these constraints, in order to draw a reliable
picture at the atomistic scale of the Mg1-xAlxB2 (0<x<0.5)
ternary system, two symmetry-inequivalent configurations
were considered for each composition. This choice aimed
at taking into account the alternative and concurrent in-layer
and in-volume doping. Indeed for a multiple aluminum
substitution, the doping can occur on a single metallic layer
(in-layer doping), leaving the other Mg layer in the oP36
structure unaltered, or on both metallic planes (in-volume
doping). Among all the possible in-volume or in-layer
substituted structures, we apply another “selection rule”, by
adopting the configuration in which the interatomic Al-Al
distance is maximized. This rather arbitrary assumption aims
to mimic a “minimum-perturbation criteria” of the hosting
MgB2 lattice, by minimizing the direct interaction between
the aluminum atoms and the resulting chemical pressure. The
thirteen supercells selected with these criteria for the DFT
calculations are summarized in Table 1.

DFT calculations have been performed by using the PWscf
code, included in the QUANTUM-ESPRESSO package:25

post-SCF calculations were carried out by using the routines
included in the same package. Vanderbilt ultrasoft pseudo-
potentials were adopted for Mg, Al, and B including 8, 3,
and 3 electrons in the valence shells, respectively. The
adopted pseudopotentials were retrieved from the database
provided by the PWscf compilers.25

The Irreducible Brillouin Zone (IBZ) was sampled by
adopting Γ-centered uniform Monkhorst-Pack (MP) k-points
grids.26 A 7 × 7 × 7 grid with 64 irreducible k-points has
been adopted for the oP36 supercells. The tetrahedron
method27 has been adopted for deriving the electron oc-
cupancies in the IBZ integration at the Fermi level.

The adopted pseudopotentials were checked on the boron,
magnesium, and aluminum isolated atoms and elemental
bulks in order to assess a satisfactory kinetic energy cutoff,

Ecut, for the plane wave basis set calculations: a total energy
convergence threshold of 0.3 mRy at-1 was achieved using
energy cutoffs of 29 and 116 Ry for the electron wave
functions and charge density, respectively. The adopted total
energy convergence threshold in the self-consistent field
calculations was 10-8 Ry. All the elemental Al(fcc),
Mg(hcp),28 and �-B29 lattices were fully relaxed, optimizing
the cell parameters and the atomic positions: the relevant
convergence threshold on the pressure was set at 0.2 kbar.
The MP grid meshes, and irreducible k-points adopted for
elemental bulk calculations were 15 × 15 × 15 (120), 17 ×
17 × 17 (297), and 5 × 5 × 5 (63) for Al, Mg, and B,
respectively. It is to be noted that for the �-B structure the
triclinic lattice proposed in ref 29 derived from the classical
trigonal structure was adopted.

The computed cell parameters are in agreement with the
experimental literature values within 0.5% and the cohesion
energies within 2.5% in the case of Al and Mg, whereas
triclinic boron cohesion energy is overestimated by about
40 kJ mol at-1, approximately 7% of the experimental
value.30 However it is to be noted that recently van Setten
and co-workers29 reported a detailed study about the stability
of elemental boron polymorphic structures and in particular
the �-B lattice. These authors observed that more than 16
boron allotropes exist and that, from a theoretical point of
view, a complete picture of the lattice stabilities of this simple
system is still far from being assessed due to the complex
structure of the �-boron primitive lattice.

As a consequence we performed a further check of the
reliability of the computational condition adopted by simulat-
ing the MgB2 hP3 primitive lattice (MP grid 15 × 15 × 15
with 216 irreducible k-points). The optimized cell parameters
a and c are 3.0750 ( 0.0001 Å and 3.5360 ( 0.0002 Å to
be compared to the experimental values of 3.083 ( 0.001 Å
and 3.520 ( 0.001 Å:28 the disagreement is in both cases
smaller than 0.5%. For what concerns the enthalpy of
formation the benchmark is the experimental value -41.5
( 0.5 kJ mol at-1.3 It is to be noted that two different energy
reference states can be adopted in order to derive the enthalpy
of formation of the MgB2 phase: (i) the sum of the isolated
atoms total energies or (ii) the sum of the elemental bulk
total energies. In the first case the auxiliaries thermodynamic
properties (i.e., the enthalpy of formation of the isolated
atoms) can be retrieved from a standard thermodynamic
database.30 The computed formation enthalpy for the hP3
MgB2 phase are -42.5 ( 2.0 and -18.5 ( 0.1 kJ mol at-1,

Table 1. Irreducible Supercells Simulated by DFT Calculations

x Al content
in the Mg1-xAlxB2

system
number of Al
doping atoms

oP36 supercell
designation doping character Al substituted metallic sites

0.0 0 oP36(0)a - -
0.083 1 oP36(1) - (1)
0.166 2 oP36(2V)oP36(2L) in-volume in-layer (1)-(d) (1)-(4)
0.25 3 oP36(3V)oP36(3L) in-volume in-layer (1)-(d)-(4) (1)-(4)-(2)
0.333 4 oP36(4V)oP36(4L) in-volume in-layer (1)-(d)-(4)-(a) (1)-(4)-(2)-(6)
0.416 5 oP36(5V)oP36(5L) in-volume in-layer (1)-(d)-(4)-(a)-(3) (1)-(4)-(2)-(6)-(3)
0.50 6 oP36(6V)oP36(6L)b in-volume in-layer (1)-(d)-(4)-(a)-(3)-(f)(1)-(4)-(2)-(6)-(3)-(5)
1.0 12 oP36(12)c - all

a This configuration corresponds to the hP3 MgB2 phase. b This configuration corresponds to the double omega Mg0.5Al0.5B2 phase. c This
configuration corresponds to the hP3 AlB2 phase.
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for the (i) and (ii) reference state, respectively. As expected
the unsatisfactory prediction of the �-B cohesion energy
directly propagates to the heat of formation of the hP3 phase
resulting in a large underestimation of the experimental value.
On the other hand by adopting the isolated atoms as a
reference state the experimental formation enthalpy and the
DFT data are in excellent agreement within 1.0 kJ mol at-1.
As a consequence for the supercell calculations we preferred
to adopt as energy reference state the isolated atoms rather
than the elemental bulk lattices.

Similarly to the cases of the bulk elements the supercells
were fully relaxed, optimizing both the atomic positions and
the cell parameters. In the optimization of the atomic
positions, the total energy convergence threshold was set at
10-5 Ry, and the convergence threshold on forces acting on
the atoms was set at 10-4 Ry. The cell parameters were
relaxed with respect to a convergence threshold on the
pressure set at 0.2 kbar, to be satisfied by each component
of the 3 × 3 stress matrix.

Using these computational conditions the total energy for
all the oP36 supercells was converged to better than 0.3 mRy
at-1 in comparison with data obtained with a 5 × 5 × 5 MP
grid and Ecut ) 28 Ry.

Calculations Results

The computational results are summarized in Table 2. The
cell parameters are those of the corresponding reduced
primitive hP3 lattice: these have been obtained by using the
inverse crystal transformation discussed in the previous
section. The energy stabilities are presented as heat of
formation at 0 K. The comparison with previous experimental
data from the literature is satisfactory both for what concerns
the structural trends of the a and c cell parameters in the
entire composition range (see refs 14 and 15) and for the
energetic stabilities of the MgB2, Mg0.5Al0.5B2, and AlB2

phases (see refs 3, 12, and 31). The lattice parameters
matched in all cases the experimental values within 0.5%.

From a structural point of view the differences between
in-plane and in-volume doped supercells appears minor in
the case of the a-axis trends, whereas the c-axis comparison
evidences a more compact structure for the in-volume doping
case. These prediction are somewhat expected since the
a-axis modifications are limited by the rigid covalent B-B
honeycomb network, whereas the c-axis variations are related
to changes in the stacking among the alternated metallic-
boron planar layers. Indeed DFT calculations correctly

predict that the metal-boron layer distances along the c-axis
are expanded in the case of MgB2 (oP36(0)) and compressed
for the AlB2 lattice (oP36(12)). In the intermediate cases the
in-volume doping allows the relaxation of all the interlayer
distances, whereas the in-plane substitution keeps unaltered
one Mg-layer resulting in an uncompressed B-Mg-B
stacking only partially compensated by the relaxation of the
adjacent B-(Mg,Al)-B stacking planes.

From a thermodynamic point of view the comparison
between the formation energy of the in-volume and in-plane
doped supercells reported in Figure 2a makes clear that these
last lattices are in all cases energetically more stable,
suggesting that the Al atoms in the MgB2 lattice cluster
preferentially on single metallic layers leaving unaltered
alternated Mg-planes. However in order to draw a conclusion
about the thermodynamic equilibria between the in-plane/
in-volume substituted phases, the entropy contribution must
be taken into account, and therefore some further discussion
concerning the configuration entropy is needed.

As discussed in the previous section the substitution of
the magnesium atoms by aluminum in the oP6 lattice can
occur in 12 metallic sites leading to a number of structural
configurations increasing with the doping concentration.
Similarly to the case of random or ordered alloys, the
resulting entropy contribution deserves to be accounted for
predicting the thermodynamic stability of the various lattices
that is driven at a given temperature by the Gibbs energy.
Therefore, by neglecting the vibrational contributions at finite
temperature for the oP36 lattices formation enthalpy and
entropy, both partially compensated by the elemental bulk
atoms concurrent effects, the Gibbs energy of formation for
a generic i supercell can be approximated by ∆fGT,i

o )
∆fH0K,i

o (DFT) - T ·Sconf,i, where Sconf,i is the corresponding
i-th configurational entropy.

The configurational entropy is Sconf ) R · ln �, where � are
the structural permutations of the Al and Mg atoms in the N
metallic sites in the oP36 lattice at a given doping concentra-
tion. Under periodic conditions at the continuum limit the
configurational entropies for the in-volume and in-plane
doped structures are given at any concentration by

Table 2. Computational Results: Structural Parameters and Energetics

in-volume Al doped supercells in-plane Al doped supercells

x Al in the Mg1-xAlxB2 system a[Å] c[Å] ∆fH°0K[kJ mol at-1] a[Å] c[Å] ∆fH°0K[kJ mol at-1]

0.0 oP36(0) 3.076a 3.537a -42.3a

0.083 oP36(1) 3.072 3.498 -42.6
0.166 oP36(2 V) 3.067 3.460 -42.8 oP36(2 L) 3.067 3.462 -43.0
0.25 oP36(3 V) 3.064 3.420 -42.9 oP36(3 L) 3.062 3.432 -43.6
0.333 oP36(4 V) 3.060 3.384 -43.1 oP36(4 L) 3.054 3.409 -44.4
0.416 oP36(5 V) 3.053 3.361 -43.3 oP36(5 L) 3.046 3.388 -45.1
0.50 oP36(6 V) 3.044 3.343 -43.2 oP36(6 L) 3.037b 3.372b -45.6b

1.0 oP36(12) 3.001c 3.282c -37.1c

a Undoped MgB2 structure [oP36(0)]; experimental values28 a ) 3.083 Å; c ) 3.521 Å. b Double-ω Mg0.5Al0.5B2 structure; experimental
values28 a ) 3.044 Å; c ) 3.356 Å. c Fully doped AlB2 structure[oP36(12)]; experimental values28 a ) 3.005 Å; c ) 3.257 Å.

Sconf
inVolume ) -R

3
· [(1 - �Al) · ln(1 - �Al) + �Al · ln �Al]
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where R is the gas constant, and �Al is the molar fraction of
aluminum in the system. The 1/3 and 1/6 factors normalize
the configurational entropies per mole of atoms. The plots
of the configurational entropies in the two cases are presented
in Figure 2b as a function of the doping concentration.

The formation enthalpies at intermediate concentrations
were obtained by a linear interpolation of the in-volume and
in-plane DFT values reported in Table 2 for the 0.083, 0.166,
0.25, 0.333, 0.416, 0.5 Al content in the Mg1-xAlxB2 system.

An example of the resulting Gibbs energy plot at 1000 K
is presented in Figure 2c. The crossing between the two
Gibbs energy curves at 1000 K for the in-plane and
in-volume doped structures indicates the presence of two
single phase stability regions. Indeed starting from the MgB2

pure lattice for Al contents <17% the Gibbs energy of the
in-volume doped structures is larger than the corresponding
one for the in-plane substituted lattices. In this region the
doping is predicted to occur randomly driven by the larger
configuration entropy of the in-volume doping compared to
the in plane substitution. A reverse picture is observed for
Al concentration >31% where the Gibbs energy curve of the
in-plane doped lattices is more negative than the correspond-
ing one for the in-volume doping. In this region DFT
calculations predicts the clustering of the Al atoms on single
planes alternated with unaltered Mg-layers: this ordering
transition is driven by the larger formation enthalpy of the
in-plane doping compared to the in volume doped lattices.
In the intermediate compositions 17-31 Al at.% the Gibbs
energy plot predicts the occurring of a phase separation
stability field. Indeed in this doping range it is possible to
draw a common tangent line to the two Gibbs energy curves.
This tangent line represents the total Gibbs energy of a
system constituted by a mechanical mixture of the two in-
volume and in-plane lattices, both at fixed Al concentration:
17 and 31 at.% Al, respectively. In the 17-31% composition
range the mixture is predicted to be the thermodynamically
stable system being its Gibbs energy smaller than those of
the in-volume or in-plane doped lattices at the same overall
Al doping concentration. A similar analysis can be repeated
at any temperature: the resulting phase diagram is shown in
Figure 3a.

In summary, going from pure MgB2 to Mg0.5Al0.5B2, our
calculations predict that at small Al concentrations the C32

Figure 2. (a) DFT formation energies for the in-plane and
in-volume aluminum doped supercells. (b) Configurational
entropy for the in-plane or in-volume doping of the MgB2

phase in the 0-50 Al at% composition range. (c) Predicted
Gibbs energy plot and phase diagram at 1000 K for the
Mg1-xAlxB2 system.

Sconf
inplane ) -R

6
· [(1 - 2 · �Al) · ln(1 - 2 · �Al) +

2 · �Al · ln(2 · �Al)]

Figure 3. (a) Predicted phase diagram for the Mg1-xAlxB2

system in the 0-50 at.% Al composition range. (b) Experi-
mental literature superconductive Tc for the Mg1-xAlxB2 system.
The two gray areas represent the predicted intervals of the
two-phase region boundaries in the high temperatures range
1000-1300 K. This temperature range is typically used in the
synthesis of the Mg1-xAlxB2 samples.
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lattice, driven by configurational entropy, would host ran-
domly the doping atoms resulting in a disordered metallic
sublattice. At large Al content the ordering of the doping
atoms in a double-ω-like structure is energetically more
favored. At intermediate concentration the two disordered
and ordered structures coexist: the phase borders are tem-
perature dependent and range between 4-18% and 37-30%
for the disordered/two-phase and the two-phase/ordered
boundaries, respectively, in the temperature range 450-1300
K.

Discussion and Conclusions

In this paper we presented the analysis of the lattice stability
of the Mg1-xAlxB2 system by DFT and supercells approach.
The computational results predict, in agreement with the
experimental literature, the occurrence of a phase separation
in the Mg1-xAlxB2 system. The miscibility gap is predicted
to be induced by a disorder-order transition in the metallic
sublattice at high Al concentration. Indeed at 1000 K
aluminum substitution takes place on random Mg sites for
concentration up to 17% of the total metallic sites, whereas
at Al content larger than 31% the substitution is energetically
more favored on alternated metallic layers (Mg undoped
planes alternate with Mg-Al layers). The formation of this
Al-rich phase leads at 50% doping to the formation of the
double omega Mg1/2Al1/2B2 ordered lattice. At 1000 K from
17 to 31% the two phases, the disordered Mg1-xAlxB2

(x)0.17) and the ordered Mg1/2+yAl1/2-yB2 (y)0.19) lattices
coexist.

This phase separation is energetically driven by the balance
of the enthalpy and entropy contributions to the Gibbs energy
and occurs in parallel with the variation of the superconductor
properties of the overall Mg1-xAlxB2 (0<x<0.5) system. In
Figure 3b the experimental superconductive Tc reported in
the literature for the Mg1-xAlxB2 system are shown.8,10,15,16,32,33

The two gray areas in Figure 3b represent the predicted
intervals of the two-phase region boundaries in the high
temperatures range 1000-1300K. This temperature range is
that typically used in the synthesis of the Mg1-xAlxB2 samples.

The experimental superconductive Tc decreases going from
pure MgB2 to the double-ω Mg0.5Al0.5B2 structure. However
two different decreasing trends are clearly evident for
aluminum concentration <17% and >31%. The Mg1-xAlxB2

system for x > 0.31 shows a decreasing trend of the
superconductive critical temperature larger than the corre-
sponding trend in the composition range 0<x<0.17. It is to
be noted that our computational results predict the formation
at large aluminum concentrations of a double-ω-like structure
with doubled c-axis compared to the starting hP3 lattice. In
this structure unaltered magnesium layers are alternated with
partially substituted metallic planes containing both Al and
Mg atoms.

On the contrary, at small aluminum concentrations, DFT-
GGA calculations predict a random substitution, even on
adjacent metallic planes, of Mg by aluminum atoms: this
spacial organization is favored by the configurational entropy.
The stability field of this disordered phase occurs in the range
0-17 atom % of Al substitution. Apparently in the same
composition range the Tc decrease is smooth and does not

show any drastic suppression of the superconductivity even
at large Al doping.

In the intermediate region 17-31 atom % of Al a large
scattering of the Tc values is observed. In this composition
range, our calculations predict the occurring of a phase
separation: this two-phase stability field has also observed
experimentally by many authors (see as e.g. refs 10, 14, and
15). On a qualitative basis we expect that this intermediate
system, constituted by both the disordered and ordered
phases, shows a more complicated and less easily predictable
superconductive character. Indeed the specific morphology
of the samples, the synthesis and annealing procedures, and
the experimental methods could lead to large scattering in
the measured low-temperature magnetization curves and
therefore to the experimental Tc.

On the basis of all these experimental evidence we can
conclude that present DFT-GGA calculations suggest that
the suppression of the Al doping disorder in the metallic
sublattice of MgB2 driven by thermodynamics occurs in
parallel with the collapse of the superconductive properties
of the material.

Moreover it can be of interest to discuss this peculiar
parallelism, i.e. the segregation of the ordered phase and the
fading of the superconductor character of the Mg1-xAlxB2

system, also in view of the accepted mechanism of the
depression of the Tc due to the saturation of the σ bands of
the MgB2 by an increased number of valence electrons.
Indeed it is now well understood that the Al doping fills the
empty σ bands right above the Fermi level in the undoped
MgB2 thus leading to a decrease of the density of states
(DOS) at the Fermi energy (EF)9,13,32 and to a topological
change in the shape of the Fermi surfaces. Our calculations
predict that the DOS at the Fermi energy for the in-plane
and in-volume doped structures shows different decreasing
trends: the pertinent variation with the aluminum content is
shown in Figure 4. Indeed the density of states at EF

decreases from 0.28 states eV-1at-1 for the undoped oP36(0)
lattice to 0.24 states eV-1at-1 for the oP36(1) structure. On
further increasing the aluminum substitution, the DOS values
at EF progressively split for the in-volume and in-plane doped
structures. Indeed in the so-called “disordered” structure, a
larger DOS at the Fermi level is found, whereas in the
“ordered” lattice a smaller one is calculated. This difference

Figure 4. Variation of the density of the states at the Fermi
energy with the aluminum content.
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increases monotonically from the 1% to the 22% for the
oP36(2 L) and the oP36(6 L) lattices, respectively. Consider-
ing the different stability fields of the two disordered and
ordered phases, it is likely to put into correlation the
aforementioned variation of the DOS values at EF with the
decreasing trends of the Tc in the two composition ranges
0-17% and 31-50% of aluminum substitution.

Another effect that usually plays a role in the suppression
of the Tc in multiband superconducting materials is the
increase of the scattering due to nonmagnetic impurities. It
has been reported9 that in the case of the MgB2 system the
role of nonmagnetic impurities on the scattering is very
weak,34 particularly for Al. The only potential effect that
could provide interband scattering is related to the buckling
of the boron-layers and the subsequent out of plane disorder.
Our calculation suggests that the buckling in both the cases
of the in-plane or in-volume doping is similar and limited
to a corrugation of the boron honeycomb smaller than <0.1
Å. On passing one can speculate that, by combining this
result with the aforementioned trends of the DOS at EF, the
experimental spread in Tc values observed in the mixed phase
region of the phase diagram (Figure 3) could be correlated
to the splitting in the DOS values, rather than due to different
impurity scattering.

However any further quantitative analysis or conclusion
about the effect of the out of plane disorder here sketched is
beyond the capabilities of the computational approach
adopted and would require the calculation of the phonon
spectra and of the electron-phonon coupling constants.
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Abstract: Intra- and intermolecular potential energy surfaces of the 4,4′-di-n-heptyl azoxyben-
zene molecule have been sampled by ab initio calculations and represented through a force
field suitable for classical bulk simulations. The parametrization of the molecular internal flexibility
has been performed by a fitting procedure based on single molecule Hessian, gradients and
torsional energies, computed using density functional theory. The intermolecular part of the force
field has been derived as a pure pair potential, by fitting the dimer potential energy surface
sampled by the Fragmentation Reconstruction Method. Preliminary molecular dynamics runs
have been performed on systems of 210 and 600 molecules at atmospheric pressure and
different temperatures, showing the presence of ordered and isotropic phases. Several properties
have been computed, all resulting in a good agreement with the corresponding experimental
data.

1. Introduction

Molecular dynamics (MD) simulations1,2 have rapidly be-
come a powerful tool in the study of soft matter.3-6 The
massive increase of computational resources has nowadays
made possible performing molecular dynamics (MD) ato-
mistic simulations on bulk phases up to thousands of medium
sized molecules for several tens of nanoseconds. At the same
time, there has been a growing effort to search for “realistic”
force fields (FF), capable of retaining most of the detail which
specifies the chemical identity of the bulk phase forming
molecules. One possibility is to adopt a FF parametrization
based on quantum mechanical (QM) calculations7 on both
monomer and dimer of the target molecule. This ab initio
derived (ABD) model potential can then be employed in MD
simulations for the calculation of the bulk properties. A
scheme of such approach can be summarized as follows:

1) QM calculations of intermolecular and intramolecular
potentials with quantum mechanical methods

2) Parameterization of the computed energies (and pos-
sibly, energy derivatives) with an analytical model potential
suitable for computer simulations

3) MD simulations and comparison of the resulting
macroscopic properties with the relevant experimental data

QM based parametrizations of the intramolecular FF part
have been proposed by several groups and employed in
widely used force fields.8-14 In a recent work,15 parameters
for bonded interactions and partial charges of the azobenzene
group (AB) have been derived from ab initio molecular
dynamics reference calculations. A classical FF, including
this description of the AB unit, was applied to the liquid
crystal 8AB8, where 8-carbon chains are linked to the phenyl
rings of AB via ether bonds. However, the phase transition
temperatures were missed by almost 100 K.

In this paper, the equilibrium internal coordinates and the
force constants of the HAB molecule are obtained by fitting
DFT optimized energies, gradients and Hessian matrix using
the JOYCE16 program, recently17 developed in our laboratory.

The QM route to intermolecular FF is much more involved
because it requires the creation of a large energy vs geometry
database, obtained by suitable post Hartree-Fock calcula-
tions capable of capturing a relevant fraction of the correla-
tion energy, in order to properly account for the dispersion
energy. Moreover, from early simulations on liquid argon1

and argon-krypton mixtures,18 it was found that the inclu-
sion of three-body interactions in the intermolecular potential
is a necessary condition to obtain accurate results of pressure
and liquid-vapor equilibria.* Corresponding author e-mail: tani@dcci.unipi.it.
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Unfortunately, the inclusion of three-body interactions in
the QM database as well as in the MD simulation, is
computationally prohibitive in view of the dimensions of the
molecules that typically can form mesophases. On the other
hand, it has been demonstrated that the use of standard FFs,
based on two-body effective potentials that include three-
body effects in an average way, does not lead to accurate
results in the case of liquid crystal forming molecules.19

However, in a previous work on benzene,20 we have shown
that an accurate two-body potential is capable of accounting
for several bulk properties, both in crystalline and liquid
phases. The overall performance of that ABD FF was
comparable to that obtained by employing the well-known
OPLS effective potential,21 which was tuned to reproduce
experimental density and vaporization enthalpy of liquid
benzene. In the case of larger molecules, e.g. polymers or
liquid crystals, a corresponding tuning of the FF parameters
can be very time-consuming for the long equilibration time,
and this route is rather hard to be pursued.19 On the other
hand, the transferability of such parameters from smaller
molecules does not allow for retaining a sufficient degree
of chemical specificity. Moreover, FF parameters are tuned
for a well-defined thermodynamic state (usually the isotropic
liquid), so it is unlikely that their quality stays the same in
different thermodynamic conditions.

For these reasons in this paper we neglect three-body
effects and consider only two-body intermolecular interac-
tions. Even with this reduction, a reliable QM sampling of
a dimer potential energy surface (PES) is very computational
demanding for the large number of dimer arrangements to
be considered. For this step, we employ the Fragmentation
Reconstruction Method (FRM),7,22 which allows us to
calculate the dimer intermolecular energies of large molecules
with reduced effort, while preserving high accuracy. This
method is based on fragmenting each monomer into moieties
and reconstructing the intermolecular energy as a sum of
the interaction energies of all pairs of resulting fragments
(see Section 3.2).

In previous applications on medium size molecules, the
indirect reconstruction route of FRM was adopted for
n-pentyl-4′-cyanobiphenyl (5CB),22,23 while the direct route
was followed for n-pentyloxy-4′-cyanobiphenyl (5OCB)17

(see the following section for details). The MD results
obtained for 5CB and 5OCB seem to indicate that closer
agreement with the experimental data is obtained if the
potential is parametrized through the direct route. In fact,
the overall behavior of the 5CB intermolecular model FF
appeared to be slightly too attractive, resulting in an
overestimation of the density by almost ∼6%,23 which was
shown to have dramatic effects on the translational dynam-
ics.24 On the other hand, when the direct reconstruction is
employed, as for 5OCB, the density is much better repro-
duced (∼2%) and, consequently, a more accurate description
of the translational dynamics is achieved.17

We believe additional tests of our approach to force fields
are in order, to prove that it is worth the extra computational
effort it entails, compared to the straightforward use of
literature potentials.

In this paper a new application of the FRM is proposed
for the mesogenic molecule 4,4′-di-n-heptylazoxybenzene
(HAB) via the direct method for the parametrization of the
intermolecular FF. HAB can be considered a good test case,
as its molecule contains new chemical motifs that force us
to explore diverse fragmentation schemes. In addition, its
smectic phase has a reasonably large range of stability,
although this is not true for the nematic one. The fairly large
amount of experimental data available on HAB (see e.g. ref
25) provide the necesssary information for a thorough test
of our model force field.

A successful validation, obtained from a detailed calcula-
tion of several relevant experimental observables, would
support the reliability of the approach, confirming the
possibility of exploiting its predictive capabilities in the
calculations of properties not easily accessible to experiments
and/or of not yet synthesized materials.

The paper is organized as follows: Section 2 contains the
main computational details of both QM and MD calculations;
the results of the FF parametrization are reported in Section
3, together with the discussion of preliminary simulation runs.
Main conclusions are collected in the last section.

2. Methods and Computational Details

2.1. Intramolecular FF. QM calculations for both intra-
and intermolecular PES sampling were performed with the
GAUSSIAN 03 package.26 In all single molecule calcula-
tions, the density functional B3LYP method27 was used with
a correlation consistent basis set, cc-pvDz. The absolute
energy minimum was obtained by a complete geometry
optimization. Vibrational frequencies, gradients and Hessian
matrix were computed only for this conformation. Energy
profiles for flexible dihedrals were obtained by performing
geometry optimizations without any restriction but the
investigated torsional angle, which is increased in a stepwise
manner. The torsional energy fitting was performed within
the Frozen Internal Rotation Approximation.28

From this database, the intramolecular FF has been
parametrized with the JOYCE program,16 through a least-
squares minimization of the functional Iintra

where Ngeom is the number of the sampled conformations,
QK is the Kth normal coordinate, and Ug is the DFT computed
energy in the gth geometry. The QM Hessian matrix HKL and
the FF Hessian are evaluated at the absolute minimum g )
0. Two different weights Wg have been chosen: 0.0076 for
the conformations with a low internal energy (=5 kJ/mol)
and 0.0019 for all the others, in order to obtain a more
accurate description of the more lowest energy geometries.
The diagonal and off diagonal elements of the weight matrix
W′′ were set to 0.05 Å4 amu2 and 0.025 Å4 amu2, respec-
tively. Details of the fitting procedure can be found in ref
28.

Iintra ) ∑
g)0

Ngeom

Wg[Ug - Eg
intra]2 + ∑

KeL

3N-6 2W′′KL

(3N - 6)(3N - 5)
×

[HKL - ( ∂
2Eintra

∂QK∂QL
)]

g)0

2

(1)
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The employed intramolecular ABD-FF Eintra is in diagonal
form (i.e., without coupling terms between internal coordinates)

The first three terms have an harmonic expression

where kµ
s , kµ

b, kµ
t and rµ

0, θµ
0, φµ

0 are the force constants and
equilibrium values for stretching, bending, and rigid torsional
internal coordinates, respectively. For flexible dihedrals a sum
of cosines is used, namely

where kjµ
d is the force constant, δµ is the flexible dihedral,

and nµ
j and γµ

j are the multiplicity and a phase factor for the
jth cosine. Nµ is the number of cosine functions employed
for dihedral µ. Finally, in the last term of eq 2, ELJintra is the
standard 12-6 Lennard-Jones potential between the interac-
tion sites of the same molecule.

2.2. Intermolecular FF. As mentioned above, the FRM
approach can be implemented in an indirect and a direct way.
In both cases, the molecules of the target dimer are
fragmented into the same number of moieties. In the indirect
approach the PES of all resulting fragment-fragment pairs
were computed at the QM level for many geometrical
arrangements. All PESs were fitted with complex site-site
analytical model functions22 including several polynomials,
exponentials, and Gaussian functions, with and without
angular dependence. The intermolecular PES of the target
dimer was eventually reconstructed by summing up all the
fragment-fragment analytical model functions. It must be
stressed that only during the reconstruction step the fragments
are arranged in the same geometry in which they are
reciprocally placed when considered as moieties of the whole
molecules.

Conversely, in the direct FRM route, the fitting step of
the fragment-fragment PES is avoided, and the sampling
procedure is directly performed on the whole dimer. For each
dimer arrangement, the interaction energy is computed at
the QM level by summing the appropriate fragment-fragment
contributions obtained by QM calculation, rather than
summing the energy contribution obtained by previous
fragment-fragment fittings, as in the indirect route.

Here, the HAB intermolecular PES was sampled through
FRM,7,22 computing the fragment-fragment interaction ener-
gies of all dimers with the direct route, in the supermolecule
approach with a MP2 method, and considering the BSSE
by the standard counterpoise correction.29 A suitably 6-31G*
modified basis set was used, where the exponents of the d
polarization functions are decreased to Rd ) 0.25, following
the suggestion of Hobza and co-workers.30,31 As to the

benzene dimer, which can be considered as a prototype for
the aromatic interactions, the interaction energies computed
at the MP2/6-31G*(0.25) level were shown20,30,31 to well
reproduce the results of high quality calculations.32,33 In our
case, the results of former FRM applications20,22,34-36

suggest that this choice is a good compromise between the
accuracy required in the PES description and the high number
of energies required for an accurate sampling.

The intermolecular parameters were obtained from a least-
squares fitting procedure, by minimizing the functional

where Ngeom is the number of geometries considered for the
HAB dimer, Uk

FRM is the energy of the kth dimer arrangement
computed by FRM/MP2, and Ek

inter is the value of the fitting
model function for the geometry k

where Eij
LJ and Eij

Coul are the standard 12-6 Lennard-Jones
potential and the charge-charge interaction between a pair
of sites i,j of two different molecules. As for other
applications,7,20 the minimization procedure of functional Iinter

was performed by imposing for all geometries a Boltzmann-
like weight with R ) 1.6 kJ/mol-1.

2.3. Bulk Simulations. The ABD-FF, obtained as sketched
above, has been employed for preliminary MD simulations
carried out with a parallel version of the Moscito4.037

package on systems of 210 and 600 HAB molecules. In all
runs bond lengths were kept fixed at their equilibrium value
using the SHAKE algorithm38 which allowed us to use a
time step of 2 fs. Charge-charge long-range forces were
treated with the particle mesh Ewald method,39,40 using a
convergence parameter R of 5.36/2Rc and a 4th order spline
interpolation, while the short-range interactions were trun-
cated at Rc ) 10 Å, employing standard corrections for
energy and virial.1 In the NPT ensemble, temperature and
pressure were kept constant using the weak coupling scheme
of Berendsen et al.41

The equilibration of the resulting trajectories was assessed
by monitoring the mass density (F), the positional and
orientational order vs the simulation time. The phase director
n was identified as the eigenvector corresponding to the
largest eigenvalue of the Saupe ordering matrix Q̂, whose
elements are

where the mean value 〈...〉 is obtained averaging on all
molecules composing the system, and u (a ) x,y,z) is the
unit vector of HAB molecular long axis. The orientational
order was measured through the second rank order parameter
P2, computed as the maximum eigenvalue of Q̂. Positional

Eintra ) Estretch + Ebend + ERtors + EFtors + ELJintra

(2)

Estretch ) 1
2 ∑

µ

Ns

kµ
s (rµ - rµ

0)2; Ebend ) 1
2 ∑

µ

Nb

kµ
b(θµ - θµ

0)2;

ERtors ) 1
2 ∑

µ

NRt

kµ
t (φµ - φµ

0)2 (3)

EFtors ) ∑
µ

NFdihedrals

∑
j)1

Nµ

kjµ
d [1 + cos(nµ

j δµ - γµ
j )] (4)

Iinter )
∑
k)1

Ngeom

[(Uk
FRM - Ek

inter)2]e-RUk
FRM

∑
k)1

Ngeom

e-RUk
FRM

(5)

Ek
inter ) ∑

i)1

Nsites

∑
j)1

Nsites

[Eij
LJ + Eij

Coul]k (6)

Qab ) 〈12(3uaub - δab)〉
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order was monitored by computing the positional order
parameter τ

where r is the position of the molecular center of mass, e is
the unit vector normal to the smectic layers, and d is the
layer separation. The latter is unknown and is optimized in
order to maximize τ, since this ensures that the average we
obtain has the same periodicity as the translational distribu-
tion function.42

Once equilibrated, HAB systems at several temperatures
were simulated in the NVE ensemble to calculate some
dynamical properties, as the isotropic translational diffusion
coefficient D and the shear viscosity ηS. The former is
computed as proportional to the long time limit of the center
of mass mean square displacement (MSD)

where 〈...〉 means a double average over all configurations
and molecules. The shear viscosity is computed as

where V is the volume of the simulation box, kB is the
Boltzmann constant, and Cσ(t′) is the correlation function
of the off-diagonal elements of the stress tensor σ̂.43 Due to
the long time scales that characterize the collective dynamics
of these systems, it has been necessary to extrapolate the
value of ηS from a fitting with a double exponential function,
as done previously in other applications.24

3. Results and Discussion

3.1. Intramolecular Parametrization. The HAB mol-
ecule is described with a full atomic model, except for the
aliphatic hydrogens which are grouped with the chain carbon
they are bonded to, in a united atom (UA) description, for a
total of 37 interaction sites per molecule (see Figure 1).

The intramolecular contribution to the FF, Eintra, was
parametrized on an HAB smaller homologue, namely 4,4′-
dibutylazoxybenzene (BAB, see Figure 1), which differs from
the target molecule for six methylene units (three for each
side chain). This seemed a reasonable choice since it reduces
the computational time and the UA parameters describing
the flexibility of the longer chains (HAB) are not expected
to be much different from those obtained for the smaller
homologue (BAB).

The internal coordinates can be classified into flexible and
rigid ones. Rigid coordinates are bond lengths, bond angles,
and those dihedral angles determining the aromatic ring
planarity, and they are all described with the harmonic type
potential reported in eq 3. Conversely dihedrals δ1-δ8

reported in Figure 1 are to be considered flexible coordinates:
the harmonic approximation fails in describing their potential,
since the energy profile allows them to assume several values
between 0° and 360° at room temperature and they will be
described through the cosine expansion (4). Among these,
δ1 is the angle between the aromatic ring bonded to the site
labeled N and the azoxy bridge plane; δ2 is the analogue of
δ1 referred to the other ring; δ3 and δ5 are the angles formed
by the aromatic ring plane and the plane containing the first
two atoms of the aliphatic chain. Finally, δ4 and δ6-δ8 are
the dihedral angles driving the flexibility of the aliphatic
chains. The Hessian matrix for the BAB minimum energy
conformation has been computed together with the torsional
energy profile for dihedrals δ1 to δ6, which have been
sampled with steps of 30° in the [0-180] range.

No sampling has been performed for δ7 and δ8, and their
description was made through the parameters reported for
n-butane,9 assuming the transferability of this torsional
potential. Thus, the JOYCE fitting procedure was applied
according to eq 1, with Ngeom ) 42, yielding an overall
standard deviation of 0.044 kJ/mol, with maximum error on
energies of 1.7 kJ/mol (optimized parameters are reported
in Tables 1-4).

The torsional profile for δ1-δ8 is reported in Figure 2 which
shows the very good agreement between the DFT computed
energies and the ABD torsional curves. The lowest energy
of δ1 and δ2 is at 0° with a torsional barrier of ∼25 kJ/mol
at 90° meaning that in the equilibrium geometry the azoxy
group and the aromatic rings are expected to be coplanar.
On the contrary, δ3 and δ5 prefer a 90° conformation, as
found at the aliphatic-aromatic linkage in more simple
compounds as ethylbenzene.44 The energy profile vs both

Figure 1. Model adopted for the HAB molecule (bottom
panel) and flexible dihedral definition in the BAB homologue,
employed for intramolecular parametrization (top panel). All
aromatic hydrogens have been labeled after the carbon atom
they belong to, i.e. Hn3 is hydrogen bonded to the Cn3 atom,
etc.

τ ) 〈|exp(2πi
r · e
d )|〉 (7)

D ) lim
tf∞

D(t) ) lim
tf∞

1
6t

〈[r(t) - r(0)]2〉 (8)

ηS ) lim
tf∞

V
6kBT ∫0

t
Cσ(t')dt' (9)

Table 1. BAB: Optimized Stretching Parameters

stretching

bond r0 (Å) ks (kJ/(mol Å2)) bond r0 (Å) ks (kJ/(mol Å2))

Cc1-C1 1.511 2699 Cc1*-Cn1 1.512 2699
C1-C2 1.403 2766 Cn2-Cn1 1.405 2766
C2-C3 1.392 3377 Cn3-Cn2 1.394 3377
C3-C4 1.415 3083 Cn3-Cn4 1.397 3083
C2-H2 1.093 3368 Cn2-Hn2 1.093 3368
C3-H3 1.087 3368 Cn3-Hn3 1.088 3368
C4-N 1.400 2841 Cc3-Cc2 1.530 2644
N-NO 1.281 4124 Cc1-Cc2 1.541 2308
NO-O 1.254 3960 Cc1*-Cc2 1.541 2308
NO-Cn4 1.467 1925 Cc2-Cc2 1.532 2308
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chain dihedrals, δ4 and δ6, has an absolute minimum at 180°
(trans conformation) and a relative one at (60° gauche
conformations) separated by rather high barriers. It is worth
noticing that, as expected, the torsional potential curves of
the chain dihedrals δ4 and δ6 are in excellent accord with
those of n-butane (see Figure 2), confirming that this potential
can be confidently transferred to all aliphatic chain dihedrals.

Extending the fitted intramolecular potential to the HAB
molecule is now straightforward: by looking at the bottom
panel of Figure 2 it is clear that all the inner chain dihedrals
behave in similar manner, since the fitted torsional profile
for δ4 and δ6 exactly traces out the δ7, δ8 shape, which is
transferred from n-butane.

A fortiori, the force constants of more rigid internal
coordinates, as methylene-methylene bond stretching and
angle bending, are also expected to be transferable from those
computed for the BAB smaller chains.

However, some intramolecular LJ terms were added to
the FF. Previous experience on the UA modeling of 5CB
molecule23 stressed the need for such terms to both prevent
an unphysical curling of the aliphatic chain on the core and
on itself and to correctly take into account intramolecular
interaction between the aromatic carbons and the methyl
group.45 Pair interaction parameters were added between
aromatic carbons and chain UA sites at least 5 bonds apart
and between methylic and methylenic chain groups 6 bonds
apart. Finally pair interaction parameters have been also
added to describe the interaction between the H2(n2) and the
methylenic group bonded to Cc1(*) (see Table 5).

3.2. The FRM Approach. The interaction potential has
been calculated with the FRM, which relies on the assumption
that the interaction energy of a dimer can be approximated to
a good accuracy as a sum of energy contributions between the
pairs of fragments which concur to form both molecules. By

Table 2. BAB: Optimized Bending Parameters

Table 3. BAB: Optimized Rigid Torsion Parameters
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way of example, let us consider a simple AB molecule where
A and B are two moieties connected by a single bond. The whole
molecule can be formally written as

where the two intruder atoms Ha and Hb are first included to
saturate the A and B fragments and then removed as a HaHb

molecule. The spatial position of the fragments is the same as
in the whole molecule, whereas the location of the intruder
atoms Ha and Hb is determined by the equilibrium geometry of
the saturated fragments BHa and HbB, which normally cor-
respond to stable molecules. For the success of the method it

must be verified that the electronic density on the A (B) moiety
is as close as possible to that in the AB and AHa molecules.
This is of particular importance for the electronic density of
the π orbitals in aromatic systems. Let us now consider a second
molecule CD interacting with AB (of course CD can be the
previous AB molecule moved to a different spatial location). A
similar fragmentation scheme leads to

The complete interaction energy af the AB · · ·CD system
can be recovered by summing up the interaction energy of
all the involved pairs, including the fragments only formed
by intruder atoms

The sign of each terms is determined by the single sign
in the above fragmentation schemes for AB and CD. From
the last equation, the computational advantage of the FRM
approach is apparent: the interaction energy is written as a
sum of interaction energies of pairs well smaller than the
whole AB · · ·CD system. For this calculation a suitable QM
method able to recover a large part of the dispersion energy
has to be employed. Since such QM methods scale at least
as the fourth power of the number of electrons, the
computational gain can be further appreciated. Previous
applications of the FRM approach17,35 have shown that, with
a suitable choice of the method and basis set, a reliable
database for many geometrical arrangements can be obtained
and employed for FF parametrization.

3.3. Intermolecular Parametrization. The direct FRM
route has been applied to the HAB molecule to sample its
intermolecular PES, following the fragmentation scheme
reported in Figure 3.

The reliability of the fragmentation using H2 as intruder
molecules was already validated.35 Here, more attention has
been paid to verify possible fragmentation schemes of the
central aromatic core. With this aim preliminary calcula-
tions46 have been performed on the HAB’s smaller homo-
logue, 4,4′-dimethylazoxybenzene. We found a cut along the
N-C4 bond (see Figure 1) preferable to that along NO-Cn4,
as the electronic density distribution of the resulting frag-

Figure 2. BAB (4,4′-dibutylazoxybenzene) - proper torsions,
the symbols represent the sampled points while the dashed
lines are the curves obtained with the model parametrized
potential V. Only the region 0°-180° is shown because of
symmetry reasons.

Table 4. BAB: Optimized Flexible Torsion Parameters

flexible torsions

dihedral angle n kd (kJ/mol) dihedral angle n kd (kJ/mol)

C3Ck4NNo (δ1) 0 0.998 (O)NNkoCn4Cn3 (δ2) 0 1.997
2 -5.739 2 -3.205
4 0.174 4 0.502
6 -0.047 6 -0.025

Cn2Ckn1Cc1*Cc2 (δ3) 0 1.997 C2Ck1Cc1Cc2 (δ5) 0 1.997
2 1.358 2 1.358
4 -0.325 4 -0.325
6 -0.099 6 -0.099

C1Ckc1Cc2Cc2 (δ6) 0 0.998 Cn1Ckc1*Cc2Cc2 (δ4) 0 0.998
1 3.657 1 3.657
2 1.995 2 1.995
3 7.504 3 7.504
4 -0.263 4 -0.263

Cc3Ckc2Cc2Cc1* (δ7) 0 -2.106 Cc3Ckc2Cc2Cc1 (δ8) 0 -2.106
1 4.330 1 4.330
2 1.738 2 1.738
3 7.520 3 7.520
4 0.126 4 0.126
5 0.172 5 0.172
6 0.241 6 0.241

AB = AHa + HbB - HaHb

Table 5. Intramolecular LJ Parametersa

intramolecular LJ parameters

site couple σ (Å) ε (kJ/mol)

Cc2
*** · · · Ca 3.30 0.69

Cc2
** · · · Ca 3.56 0.69

Cc2
* · · · Ca 3.56 0.69

Cc3 · · · Ca 3.56 0.69
Cc3 · · · Cc2

c1(*) 4.34 0.021
Cc2

c1(*) · · · H2(n2) 4.80 0.004

a Ca indicates an aromatic carbon site; Cc2
* is the Cc2 site

bonded to the Cc3 one; Cc2
** and Cc2

*** are the sites that follow along
the aliphatic chain. Finally Cc2

c1(*) represents the Cc2 bonded to
Cc1(*).

CD = CHc + HdD - HcHd

E(AB · · · CD) )
E(AHa · · · CHc) + E(AHa · · · HdD) - E(AHa · · · HcHd) +
E(HbB · · · CHc) + E(HbB · · · HdD) - E(HbB · · · HcHd) -
E(HaHb · · · CHc) - E(HaHb · · · HdD) + E(HaHb · · · HcHd)

(10)
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ments is more similar to that exhibited by the moieties in
the whole molecule. Thus the final fragments are two
hexanes, one 4-methylbenzenamine and one methyl,4-
(methyl-NNO-azoxy)phenyl. It may be worth noting that the
intruder molecule arising from the chosen scheme in the
central core is a CH3NH2 molecule, as shown in Figure 3.

The low symmetry of the target dimer makes sampling
the PES far from straightforward. However, a classification
of the many dimer arrangements is still possible in terms of
displacement vectors (R̂, û⊥, and û|) and Euler angles (R and
	), as reported in Figure 4. Face-to-face (FF) configurations
can be obtained by shifting one molecule along the vector
R̂, with R ) 0° and 	 ) 0° or 180°. In the former case, the
vectors NO-O point in the same direction, and the geometries
so obtained are labeled as parallel face-to-face (p-FF). In
the latter, the vectors NO-O point in opposite directions
resulting in antiparallel (a-FF) arrangements. If both mol-
ecules are rotated by R ) 90°, the cores are found in a side-
by-side disposition (p-SS or a-SS, whether 	 ) 0° or 180°).
Side-to-face (p-SF and a-SF) geometries are obtained with
a rotation of R ) 90° of one molecule. If the 	 angle is set
to 90°, the two cores draw a cross and the x-FF, x-SF, and
x-SS arrangements can be created by applying a further

rotation around the 	-rotated long molecular axis of 0°, 90°
on one or both molecules, respectively. Finally if one
molecule is rotated around û⊥, the dimer is found in a
T-shaped (TS) configuration.

Further subclasses can be created by exploiting the relative
position of the side chains of the two dimer molecules. If
the symbol “ ⊂ ” is used to sketch the HAB molecule, three
subclasses can be determined depending on when the alkyl
chains point in the same direction (⊂ ⊂), toward each other
(⊂ ⊃), or in opposite directions (⊃ ⊂).

The PES sampling has been performed by computing the
FRM energy of Ngeom ∼ 2000 geometries (see eq 5).

From a preliminary analysis of the resulting FRM database,
the configurations with the more attractive interactions are
the ⊃ ⊂ ones, where the steric chain repulsion effect does
not prevent the rings and the NNO group to reach their most
favorable positions with respect of the same groups of the
other molecule. For the same reason, less attractive energies
are found for the ⊂ ⊂ and ⊂ ⊃ arrangements, in this order.

In the latter, the steric effect dominates and the interaction
energy wells are far less deep and shifted to higher values
of the displacement coordinate. For example, for the p-FF
case, reported in Figure 5, ⊃ ⊂ have a maximum interaction
energy of about -50 kJ/mol, ⊂ ⊂ reach -20 kJ/mol at most,
and ⊂ ⊃ only are -5 kJ/mol. The situation is similar for
the a-FF geometry: here the ⊃ ⊂ is even more the favorite
since the oxygens point in opposite directions and the
maximum interaction energy can reach -57 kJ/mol.

Among all classes, the most favored geometries are p-FF,
a-FF, and x-FF configurations, where the aromatic rings come
closer to each other and the interaction π energy significantly
contributes to the total interaction energy.22,36 It may be
worth noting that in the x-FF case, the aliphatic chains are
not superimposed in any geometry with the result that their
repulsion effect is not as important as in the previous
configurations. This means that ⊂ ⊂, ⊂ ⊃, and ⊃ ⊂
geometries have similar situations, with -40 kJ/mol maxi-
mum interaction energies in all cases. The interaction
energies for the SS configurations are less attractive: the a-SS
geometries do not reach -30 kJ/mol and p-SS ones arrive
at -18 kJ/mol, at most. Furthermore, p-SF does not overstep
the -20 kJ/mol, showing energies between the FF case and
the SS one. Also the x-SF configurations are less energetic
than the x-FF (-25 kJ/mol and -40 kJ/mol, respectively).
Finally TS arrangements present maximum interaction energy
of about -12 kJ/mol. As far as the contact distance is
concerned, it can be noted that, again, there are three different
kinds of disposition: p-FF, a-FF, and x-FF configurations
have a contact distance of about 3 Å, p-SS and a-SS of 6 Å,
and TS above 8 Å. From this first picture, the anisotropic
nature of the HAB molecule shows up clearly. This is a well-
known feature of many calamitic LC, as for instance the nCB
series:47 the contact distance and the well depths of all
interaction curves strongly depend on the monomer relative
orientations.

All the sampled energies have been fitted by means of
functional (5) with the model described in Figure 1.
Equivalent sites have been given the same σ, ε, and q values.

Figure 3. Fragmentation route for HAB. The fragmentation
has been performed by cutting bonds as shown by the red
dashed lines (left panel). The four resulting fragments are
shown on the right, together with the intruder fragments, which
are encircled in blue.

Figure 4. FRM sampling. Dimer arrangements are generated
by displacing one HAB molecule with respect to the other by
translation along R̂, û⊥, or û| and/or rotation around R or 	.
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No other constraints were imposed but for σ and q of the
methylene (Cc2) groups of the chains. These sites have been
assumed chargeless as in previuos applications,17,35 since this
allows a straightfoward extension of the FF to higher homo-
logues (see the nCB series48). As to the σCc2

parameter, a first
fitting yielded a standard deviation of 2.22 kJ/mol, with a value
(4.4 Å) significantly larger than that obtained for butane (3.905
Å49) or 5OCB (3.76 Å17). With this set of parameters, a
preliminary MD run, performed in the NPT ensemble on an
isotropic system of 64 HAB molecule at 1 atm and 370 K gave
a density underestimated by ∼4% with respect to the experi-
mental value. However, another fit with σCc2

reduced to 4.1 Å,
and a slightly larger standard deviation (2.48 kJ/mol) yielded a
density within 1% of the experimental data.

The final optimized parameter set that corresponds to this
fit can be seen in Table 6.

In Figures 5 and 6, the energies obtained with the FRM
are compared with those predicted by the OPLS21,49 empiri-
cal force field, widely employed in simulations of the liquid
phase of many smaller molecules. The OPLS-FF describes
the FRM energy surface with a standard deviation of 9.56
kJ/mol. This can be seen as a remarkable achievement, and
a proof of the good transferability of the OPLS parameters.
However, the extreme sensitivity of the properties of liquid
crystalline materials to even minor changes of the molecular
structures and interactions supports the need for a more
accurate representation of the FRM PES, as attained by our
fitting procedure, which leads to the standard deviation of
2.48 kJ/mol. (See also Figures 5 and 6 for a visual estimate
of the agreement at a few selected configurations.) The need
for an accurate description of the PES is also apparent if we
consider that the FRM approach is able to reproduce the
interaction energies of HAB dimers with great accuracy, as

Figure 6 shows. In each panel of this figure we include a
point (labeled DIMER) that corresponds to the true ab initio
interaction energy of the dimer in that configuration, i.e. the
value obtained without decomposing the molecule as in the
FRM scheme. The results of Figure 6 prove two things: i)
that the FRM gives an excellent agreement with the true
value of the interaction energy (e.g., -17.1 vs -16.9 kJ/
mol with the FRM for the p-FF arrangement) and ii) that
the fit we employ faithfully describes the PES we sampled.

As a test of the predictive capability of the ABD-FF, the
energy curves of unsampled geometries have been calculated
both with the model function and using FRM. The results
are reported in Figure 7, together with the OPLS predictions.
In the top panel an energy curve for a 	 rotation is shown.
One HAB molecule was also translated by 2 Å along û⊥,
3.5 Å along R̂ and rotated by R ) 180°. Here, both curves
are in good agreement with the FRM points.

The central panel shows an interaction energy curve,
obtained by displacing one molecule along the u| direction,
with a shift of 2.5 Å along û⊥, 4.0 Å along R̂, and a rotation
of R ) 40° and 	 ) 50°. In this case the fitted curve traces
out the FRM point positions better than the OPLS. Finally,
in the third panel, a similar curve is reported for a a-FF ⊃
⊂ type, again obtained by displacing the second molecule
along u| after a translation of 3.4 Å along R̂ and a 180°
rotation of both R and 	. Even if the OPLS prediction is not
so far from the FRM points, the fitted curves are significantly
closer to the FRM data.

3.4. Preliminary MD Results. MD simulations have been
carried out on condensed phases of HAB in the NPT and
NVE ensembles. The first type of conditions were used when
searching for the transition temperatures, while the latter have
been adopted for the calculation of dynamic properties. In
all cases, we have used the largest number of molecules we
could afford with a cubic box, to prevent any artificial
ordering of the sample, induced e.g. by an elongated box.

210 HAB molecules have been considered a sensible
starting point, mainly for the simulation of the isotropic
phase. However, a larger system of 600 molecules (corre-
sponding to 22200 interaction sites) has been adopted to
study the ordered phases and to evaluate the system size
effect on the results.

The isotropic phase has been obtained starting from a 6
× 7 × 5 cubic lattice disposition where the HAB centers of
mass were placed on the nodes, with the long molecular axis

Figure 5. HAB computed and fitted energy curves for selected geometrical arrangements: p-FF ⊂ ⊂, p-FF ⊃ ⊂, and p-FF ⊂
⊃. The points represent the FRM energies and the solid lines the fitted energies. OPLS predictions are also reported with
dashed blue lines for comparison.

Table 6. HAB: Optimized Intermolecular Parameters

site ε (kJ/mol) σ (Å) q (e) site ε (kJ/mol) σ (Å) q (e)

Cc1(*) 0.148 4.15 0.272 Cn4 3.402 2.69 -0.047
C1 1.878 2.79 -0.367 Cn3 0.664 3.10 -0.126
C2 0.145 3.52 -0.043 Cn2 0.066 4.20 -0.066
C3 1.076 3.38 -0.043 Cn1 1.652 2.00 -0.050
C4 2.632 2.00 0.098 Hn3 0.082 2.00 0.093
H2 0.023 2.48 0.082 Hn2 0.053 2.00 0.119
H3 0.074 2.35 0.048 Cc1 2.590 3.44 -0.009
N 1.135 3.05 -0.374 Cc2 0.246 4.10 0.000
NO 0.020 3.82 0.729 Cc3 0.020 3.70 0.000
O 0.180 3.03 -0.428
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aligned along one of the box axes (ẑ). The system has been
equilibrated in the NPT ensemble at 400 K for 5 ns and then
cooled at 380 K and in successive steps at 370 K, 350 K,
330 K, and 300 K. Given that the experimental50 nematic-
isotropic transition takes place at 342 K, the temperatures
relevant for the true isotropic phase are 350 and 370 K.

The system of 600 molecules was obtained from a lattice
structure in a cubic box at low density which was later
compressed to the isotropic liquid density.

After equilibration, an orienting field was applied for 0.5
ns under NPT conditions (T ) 340 K). The field was able
to produce a P2 value of 0.74 with no positional order. Later,
the field was switched off, and this metastable state was used
as a common starting configuration for three runs at 340,
335, and 330 K.

The evolution of the orientational and positional order
parameter was then followed for some tens ns, with the
results shown in Figure 8. These data show clearly the

Figure 6. HAB computed and fitted energy curves for selected geometrical arrangements: p-FF ⊂ ⊂, a-FF ⊂ ⊂, x-FF ⊃ ⊂, and
p-SF ⊃ ⊂. In the first two geometries, a shift of -2 Å was applied along û⊥. The points represent the FRM energies and the solid
lines the fitted energies. The green point marked ‘DIMER’ in each panel shows the interaction energy of the dimer, computed
ab initio for the whole molecules (no FRM, see text). OPLS predictions are also reported with dashed blue lines for comparison.

Figure 7. HAB interaction energy predicted by the fitting
function (solid line) and control FRM values (open circles).
The OPLS prediction is also shown (dashed line).

Figure 8. Time evolution of orientational, P2, and positional,
τ, order parameter at three temperatures for the system with
600 molecules. Horizontal dashed lines represent the con-
ventional orientational and positional order threshold.
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existence of a smectic phase at 330 K and an isotropic phase
at 335 and 340 K. This might indicate that our model does
not lead to the nematic phase of HAB. However, it must be
stressed that reproducing by atomistic simulation a phase
that spans a range of temperature of just =10 K is a
formidable challenge.15

As to the smectic phase, our analysis finds an interlayer
spacing of =22.5 Å, significantly smaller than the experi-
mental value of 28.9 Å,51 that corresponds to a tilt angle of
=18° and identifies a smectic A phase. As a consequence it
is likely that our system is not arranged in a smectic A phase.
However, it is certainly encouraging to observe a spontaneous
positional reordering at a temperature just above the experi-
mental smectic-nematic transition temperature (327 K).50 The
layered structure of the smectic phase is apparent in the left
panel of Figure 9, while the right panel shows a snapshot of
the isotropic phase.

In the case of the isotropic phase, the MD density values
at constant atmospheric pressure are in very good agreement
with the experimental data,50 with errors always below 1%
(see Table 7). It is worth noticing that a good reproduction
of density is essential, not only for a correct description of
the structure of the system but also for an accurate evaluation
of dynamic properties, e.g. diffusion, which is extremely
sensitive to the density in these materials.

Translational diffusion has been evaluated from trajectories
obtained in NVE runs, at four different temperatures in the
isotropic phase. The same data have also been used for a
collective dynamical property, namely shear viscosity.

As far as diffusion is concerned, for all trajectories the
MSDs were computed according to eq 8 using a 4 ns
correlation time window, and the curves are reported in
Figure 10.

The computed translational diffusion coefficient is reported
in Table 7 together with its experimental counterpart,25 which
is reproduced to a good extent. The Arrhenius treatment of
the temperature dependence of D leads to an activation
energy of 33.4 KJ/mol, also in good agreement with the
experimental data of 31.9 KJ/mol.25 Upon supercooling the
isotropic system down to 330 and 300 K, a subdifusive
behavior becomes apparent, with the 	 relaxation regime
plateau between 1 and 10 ps.52 This is the same time window
already found in a previous work on supercooled isotropic
mesogens,53,54 so it may be considered a fairly general
feature of this kind of materials.

Shear viscosity, ηs, for the isotropic phase has been
investigated, too. This is a collective property that can only
be averaged on successive time origins: as a consequence,
it is affected by larger statistical uncertainty, and much longer
simulations are needed to obtain reliable values for the long
time limit of the function Cσ(t) of eq 9. To some extent, the
situation can be improved fitting the curves with a double
exponential function, as done elsewhere.24 In Figure 11 the
integral, whose infinite time limit yields ηs, is reported vs
time, together with the fitting curves, where a fitting window
of 0-400 ps has been used at all temperatures.

Figure 9. Snapshots of the smectic (left, T ) 330 K, 600 molecules) and isotropic (right, T ) 340 K, 210 molecules) phases of
the simulated HAB systems.

Table 7. Experimental and Simulated Results of Density
and Translational Diffusion Coefficient in the Isotropic
Phasea

T (K)
Fexp

b

(g/cm3)
FMD

NPT

(g/cm3)
TNVE

(K)
FMD

NVE

(g/cm3)
Dexp

b

(10-10 m2/s)
DMD

(10-10 m2/s)

300 1.002 - 302.0 0.972 0.27 0.23 ( 0.01
330 0.964 - 330.4 0.947 0.80 1.04 ( 0.04
350 0.939 0.930 ( 0.004 353.0 0.931 1.71 1.82 ( 0.06
370 0.915 0.914 ( 0.004 373.5 0.913 3.10 3.05 ( 0.01
380 0.902 0.906 ( 0.003 - - - -
400 0.877 0.889 ( 0.003 - - - -

a At T ) 300 K and T ) 330 K Fexp means the density of the
supercooled isotropic phase, i.e. that extrapolated from
experimental densities in the isotropic range, while D has been
obtained from a geometric average of the longitudinal and
transverse diffusion coefficients. b Reference 25.

Figure 10. Time dependence of the MSD in the normal and
supercooled isotropic phase (log-log scale).
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Unfortunately, experimental data are not available for HAB
viscosity, as far as we know, so we can try to estimate our
MD results by comparison with the corresponding experi-
mental data for the nCB series. T ) 353 K corresponds
roughly to a reduced temperature of 1.05, where HAB shows
(see Table 8) ηs ) 3.8 mPa s, while experimental values for
the nCB series oscillate between 10 and 20 mPa s (see ref
24 and references therein). Assuming55 an inverse relation-
ship between D and ηs, the experimental D value for HAB
(1.71), compared to that of nCB series (0.60-1.0 (10-10

m2/s)24), would yield a viscosity value in the range 5-10
mPa s, slightly larger than our computed value. However,
only experimental data can definitely assess the accuracy of
the MD results.

4. Conclusions

The FRM approach to force fields has been applied to
HAB in the direct scheme of implementation. Compared
to the indirect scheme adopted in the first application of
FRM to mesogens (the series of nCB23,24), the direct one
turned out to provide more accurate results of key
quantities for the description of condensed phase behavior,
e.g. density and diffusion coefficient of 5OCB.17 In the
present study of HAB, the density of the isotropic phase
is reproduced within 1% of the experimental value, and
also a basic probe of dynamics, i.e. the diffusion coef-
ficient D, agrees quite satisfactorily with the measured
data. The success obtained with density and D supports
some confidence that the MD results of shear viscosity
also may be close to that of the real system, which are
not available, to our knowledge.

In addition to the isotropic phase, that appears faithfully
modeled, we have obtained a smectic phase at 330 K. It is

rewarding that this smectic phase develops with a spontane-
ous positional reordering from a system with a P2 as low as
0.4 and essentially no positional order. This locates the
transition temperature to the isotropic phase between 330
and 340 K, i.e. within 10 K of the measured value of 342
K. However, from the data collected so far, the positionally
ordered phase seems a SmC, instead of the SmA formed by
the real system. More importantly, we have been unable to
obtain a nematic phase with the present parametrization of
the force field.

The incorrect smectic obtained and the missing nematic
phase indicate that some changes are to made on our model.
We are currently focusing on two main issues. The first
improvement would entail abandoning the hybrid model
adopted so far (the hydrogens of the alkyl chains are fused
to the carbon they are linked to). At a significant increase of
the number of interaction sites and hence computational time,
a truly full atomic model should be able to better match the
ab initio PES, maybe resorting to the exp-6 potential instead
of the less flexible LJ. In turn, this would reduce distorsions
that might affect some dimer configurations and propagate
into an incorrect modeling of the phase diagram of the
system, given the well-known sensitivity of these materials
to apparently minor variations of the molecular structure and
interactions.

The second point to address regards the selection of con-
figurations whose interaction energy is to be ab initio calculated.
We plan to combine chemical intuition with short MD runs,
from which significant dimer and trimer configurations could
be extracted. This way, the extent of nonadditivity could be
evaluated and the database of dimer arrangements increased in
a more physically driven approach.
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2007.

(47) Cacelli, I.; De Gaetani, L.; Prampolini, G.; Tani, A. Mol.
Cryst. Liq. Cryst. 2007, 465, 175.

(48) Cacelli, I.; De Gaetani, L.; Prampolini, G.; Tani, A. J. Phys.
Chem. B 2007, 111, 2130.

(49) Jorgensen, W.; Laird, E.; Nguyen, T.; Tirado-Rives, J.
J. Comput. Chem. 1993, 14, 206.

(50) Jagadeesh, B.; Prabhakar, A.; Rao, M. H. V. R.; Murty,
C. V. S.; Pisipati, V. G. K. M.; Kunwar, A. C.; Bowers, C. R.
J. Phys. Chem. B 2004, 108, 11272.

(51) Pape, E. Mol. Cryst. Liq. Cryst. 1984, 102, 271.
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Abstract: An algorithm is presented for the generation of molecular models of defective
graphene fragments, containing a majority of 6-membered rings with a small number of 5- and
7-membered rings as defects. The structures are generated from an initial random array of
points in 2D space, which are then subject to Delaunay triangulation. The dual of the triangulation
forms a Voronoi tessellation of polygons with a range of ring sizes. An iterative cycle of
refinement, involving deletion and addition of points followed by further triangulation, is performed
until the user-defined criteria for the number of defects are met. The array of points and
connectivities are then converted to a molecular structure and subject to geometry optimization
using a standard molecular modeling package to generate final atomic coordinates. On the
basis of molecular mechanics with minimization, this automated method can generate structures,
which conform to user-supplied criteria and avoid the potential bias associated with the manual
building of structures. One application of the algorithm is the generation of structures for the
evaluation of the reactivity of different defect sites. Ab initio electronic structure calculations on
a representative structure indicate preferential fluorination close to 5-ring defects.

Introduction

There is currently a growing interest in carbon structures
based on 5-, 6-, and 7-membered rings.1 The archetypal
example is C60, in which twelve pentagonal rings are
distributed among twenty hexagonal rings in a football-like
structure, such that no pentagon is adjacent to another
pentagon.2 The subsequent discovery of carbon nanotubes,3

nanohorns,4 and the associated nanoparticle side-products5

provide a wide-range of contrasting structures and topologies,
all of which are likely to contain a certain number of defects.6

It is well-known that nonhexagonal rings introduce
curvature into an otherwise-planar graphitic sheet.7 Introduc-
tion of an n-gon into a fragment of a graphene, where n < 5,
leads to the formation of cones. When n ) 5, fullerene-type
structures emerge, and for n > 6, the negative curvature leads

to saddle-like surfaces. As n is increased further (up to n )
24), calculations predict complex but stable distorted struc-
tures.8

Because of the stability of nonhexagonal rings in carbon
structures, a number of groups have started to investigate
whether there is evidence for polygonal defects in a number
of carbon forms including nongraphitising (microporous)
carbon,9 glassy carbon,10,11 and carbon black.12 In many
cases, it appears that incorporation of polygonal defects can
help explain some of their many characteristics, such as low
density, microporosity, and hardness.1 Recent transmission
electron microscopy (TEM) studies have demonstrated
exceptional resolution, confirming the presence of 5-mem-
bered rings in samples of activated carbon13 and providing
atomic-level insight into the edges of graphene layers.14

Theoretical investigation of such structures can also yield
useful insight. These can involve calculations of energy
pathways involved inreconstructions, suchas theStone-Wales
rearrangement in C60

15 or the reconstruction of graphene
edges.16 Calculation of experimental observables, such as
scanning tunnelling microscopy (STM) images, provides a
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direct comparison between experiment and theory and helps
in the interpretation of experimental data.17 Semiempirical
or ab initio electronic structure calculations can provide
information about reactive sites available for functionaliza-
tion18 or vibrational modes.19

However, the first stage of any theoretical investigation
is the generation of a suitable structure. For small systems
with a single defect, this is straightforward. It is possible to
construct one n-gonal defect in a graphene sheet by joining
n 60° segments of graphene together at a point.8,17 Many
such structures can be made “by hand”, although this
removes any randomness from the resulting structure and
may lead to bias in the features created. For this reason, it is
good to be able to automate the generation of suitable
structures. Since the systematic determination of structures
rapidly becomes a very large task,20 molecular dynamics
(MD)21 or reverse Monte Carlo (RMC) methods are often
used.9 Experimentally, the growth of graphene on metal
surfaces appears to occur by the addition of carbon cluster
attachment.22 Modeling of this process would offer an
alternative method for generating graphene structures.

In this paper, a novel algorithm is presented for the
automated generation of small graphene fragments containing
small numbers of 5- and 7-ring defects. This algorithm is
based on a Delaunay triangulation of a 2D array of points,
followed by subsequent refinement. This new algorithm
allows the user to define acceptable ratios of ring-sizes, based
on experimental data, for example, but is otherwise designed
around an initial random distribution of points, removing the
potential for bias. Once a structure has been generated,
energy minimization using classical molecular mechanics
generates atomic coordinates, which can then be used in ab
initio electronic structure calculations to identify sites for
functionalization via fluorination23,24 or electrochemical
methods.25

Since the details and rationalization of the fluorination
products of fullerenes and carbon nanotubes are still under
debate,23,24,26,27 the energetics of fluorination at isolated
defects, such as those present in the graphene structures
generated in the present work, can provide useful insight
into the preferred regiochemistry.

Methods

Generation of an Initial Network. An initial distribution
of points in 2-dimensional space was produced using a Sobol
quasirandom sequence.28,29 Quasirandom sequences have the
property that they cover space “more uniformly” than true
random sequences. As a result, they are often used in the
numerical evaluation of high-dimensional integrals and global
optimisation problems. Triangulation of these points, insert-
ing additional Steiner points to avoid formation of triangles
with internal angles smaller than 20°, was performed using
the program Triangle.30 The dual of the triangulation
produces a Voronoi tessellation with a distribution of ring
sizes. This process is illustrated in Figure 1.

The remaining task is therefore the conversion of the
Voronoi tessellation from an abstract network of points to a
structure with a connectivity typical of a molecular system,

in which the vertices are atoms and the edges represent
chemical bonds. In the case of interest here, graphene,
chemical knowledge dictates that the Voronoi tessellation
must fulfill the following rules (Voronoi Rules):

(1) The network is limited to 5, 6, and 7-membered rings,
with ratios as determined from experiments.

(2) Vertices must have a maximum connectivity of three
(the connectivity is lower at the edges of a finite sheet).

The dual relationship between the Voronoi tessellation and
the Delaunay triangulation leads to the following rule for
the triangulation (Triangulation Rule):

(1) Vertices must have a connectivity of 5, 6, or 7, unless
the point lies on the boundary, in which case the
connectivity may be smaller.

Voronoi and Triangulation Rule 1 can be addressed by
deleting or adding points to the triangulation in a well-defined
way until the network complies (described below). Voronoi
Rule 2 does not require an additional Triangulation Rule,
since the triangulation is conforming Delaunay, meaning that
all Voronoi vertices will automatically have a connectivity
of three (except at the edge of the tessellation).

Modifying the Network to Comply with Chemical Knowl-
edge. In the following, the connectivity in the triangulation
is represented by c. Any point with c < 5 and not on the
boundary of the triangulation was removed from the network.
All points (x,y) with c > 7 were divided into two points (x1,y1)
and (x2,y2), where q1 ) q + εq and q2 ) q - εq, where q
represents x or y and εq is a random number, small with
respect to the interpoint distances.

All points with c ) 6 were retained. Points with c ) 5,7
were deleted or divided, respectively, according to a Monte
Carlo procedure, with the acceptance and rejection prob-
abilities chosen as free parameters. A number of additional
points were also added to the convex hull of the triangulation,
also in a Monte Carlo-type procedure, in order to reduce
the number of unphysically long edges. The number of 5-,
6-, and 7-membered rings was determined and the current

Figure 1. Processes during the generation of graphene-type
networks. Clockwise from top-left: initial random points, initial
points with additional Steiner points to increase the quality of
the triangulation, Delaunay triangulation of the points, corre-
sponding Voronoi tessellation.
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pentagon/hexagon and heptagon/hexagon ratios calculated.
These are then compared with the target ratios determined
from chemical knowledge of graphene systems, typically
pentagon/hexagon ) 3/100 and heptagon/hexagon ) 1/100,31

and compliance with the Triangulation Rule is checked. If
all target ratios and network criteria are fulfilled, the network
is accepted. Otherwise, further cycles of triangulation are
performed (with no further addition of Steiner points) until
convergence is found.

Geometry Optimization. Once a satisfactory network of
points has been created, this can be converted into a chemical
structure with atoms and bonds. In the present work, the
structure was imported into the Charmm program,32 each
atom was assigned parameters corresponding to an aromatic
carbon atom in the Charmm22 parameter set,33 and the
structure was minimized using Steepest Descent or Newton-
Raphson methods to a gradient tolerance of 1 × 10-7 kcal/
mol/Å.

Preconditioning of the Triangulation Points. Conver-
gence of the above algorithm is typically slow. This is
because no relaxation of the triangulation points is allowed
during the refinement, leading to a broad distribution of
connectivities and therefore a broad range of ring sizes in
the Voronoi tessellation. Refinement is therefore slower,
since a larger number of unsuitable rings must be eliminated
before convergence is reached. This can be alleviated by
allowing relaxation.

A close-packed network of points in a plane produces a
perfect triangular network, the dual of which is a network
of hexagons. Relaxation of points in a plane will move
toward close-packing, giving a narrower distribution of
connectivities in the network with a sharp peak at a con-
nectivity of 6, as shown in Figure 2.

Each cycle of refinement (adding/deleting points) was
therefore followed by relaxation. Each point was modeled
as a lone aromatic carbon atom with the same parameters
as above, and energy minimization was performed using
the steepest descent algorithm in the Charmm program.
Only a small number of minimization steps were per-
formed, to remove as many unsuitable connectivities as

possible through local rearrangements, while retaining a
certain number of 5- and 7-connective defects, as required.
Further minimization effectively leads to the removal of
defects from the interior of the lattice through annealing.
For comparison with the initial process (Figure 1), a
corresponding set of figures showing the process with
preconditioning is shown in Figure 3. It is clear that the
topology of the final Voronoi tessellation is much closer
to that of graphene.

Electronic Structure Calculations. Ab initio electronic
structure calculations were performed on a small, defective
graphene sheet to determine the most favorable sites for
functionalization of the graphene sheet by fluorination.
Hydrogen atoms were added around the edge of the sheet
to satisfy bonding and ensure a closed-shell singlet ground
state. Full geometry optimizations were performed for all
fluorination sites on the mainly convex side of the sheet
(an additional hydrogen atom was added to the periphery
of the sheet to maintain the singlet electronic state), using
the Gamess-UK electronic structure program34 at the HF/
3-21G* level. The energies of the optimized structures
were then compared to determine the thermodynamically
most-favorable fluorination site. Because many finite
graphene-type structures have been shown to possess a
spin-polarized ground state, even with a perfect hexagonal
lattice and edge passivation,35-38 tests were carried out
to ensure that the ground state of the molecular system
was neither magnetic nor metallic. Geometry optimizations
using both spin-restricted and unrestricted Hartee Fock
formalisms were performed for the original graphene
structure and for the lowest energy fluorinated structure.
In each case, the calculations yielded identical structures
and energies. Visual inspection of the frontier molecular
orbitals (HOMO-1, HOMO, LUMO, LUMO+1) revealed
no differences for R and � electrons in the UHF calcula-

Figure 2. Distribution of ring sizes for a set of points without
(left) and with (right) preconditioning.

Figure 3. Processes during the generation of graphene
sheets, with preconditioning. Clockwise from top-left: initial
random points following relaxation, initial points with additional
Steiner points to increase the quality of the triangulation,
Delaunay triangulation of the points, corresponding Voronoi
tessellation.
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tions. As a result, the spin-restricted Hartree-Fock method
was deemed to be appropriate.

Results

Small Structures. For a target ratio of ring sizes (pentagon/
hexagon, heptagon/hexagon) of 0.2-0.3, small systems can
be generated, with tens of rings. These can be generated with
no preconditioning, starting from initial arrays of ∼100
points. A selection of energy-minimized structures are shown
in Figure 4. Such structures are suitable for use in ab initio
electronic structure calculations to probe the reactivity at
various sites relevant to functionalization (see below).

Larger Structures. For smaller target ratios, such as
pentagon/hexagon ) 0.03 and heptagon/hexagon ) 0.01,
larger systems with hundreds of rings must be constructed
for defects to be observed. This creates certain difficulties
in automated production of suitable networks. One particular
feature of the Voronoi tessellations produced by the above
algorithm is that the majority of pentagonal defects are found
around the edges of the network, especially at the armchair
edges. This can be observed in Figures 1 and 3. This is an
artifact of the calculation of Voronoi tessellation for finite
systems. If these edges are included in the final network,
not only will the number of pentagonal rings be much higher
than required by the target ratio, but the system is also not
likely to be representative of extended graphene sheets.
However, they are likely to be of relevance for edge effects
in graphene, where reconstructions are found to occur.16

To avoid introduction of these artifacts, structures were
cut from the central region of a tessellation. As the relaxation
of the sheet and growth around the edges (because of the
addition of extra vertices along long edges) was found to
occur in an isotropic manner (the circular nature of the
relaxed network is obvious in Figure 3), a circle with a radius
of approximately half the maximum radius was cut from the
large network. Although it is possible to cut other geometric
or random shapes from an extended sheet with no changes
to the algorithm, we restrict ourselves to circles for simplicity.

Two representative structures obtained with target ratios
of 0.03 (pentagon/hexagon) and 0.01 (heptagon/hexagon) are
shown in Figure 5.

The structures generated by the algorithm are governed
by a number of parameters, including the probability of

dividing and deleting a vertex. Increasing these probabilities
leads to an increase or reduction in the number of atoms in
the final structure, respectively, as illustrated in Figure 6.
The parameters used in the current work are provided in
Table 1.

Distribution of Rings. In the structures illustrated in
Figure 5, it is noteworthy that 5-ring and 7-ring defects tend

Figure 4. A selection of small defective graphene sheets
generated using the new algorithm.

Figure 5. Two defective graphene sheets generated using
the new algorithm. Side views of the sheet (revealing curva-
ture) are placed adjacent to the planar view. Atoms forming
defect rings are shown in a ball and stick representation.

Figure 6. Effect of the probability for the deletion/division of
points on the total number of carbon atoms in the structures
created for six individual calculations, all of which converged
to a valid structure.

Table 1. Free Parameters Used in the Refinement of a
625-Vertex Data Set

probability of deleting a vertex 0.1
probability of dividing a vertex 0.1
probability of adding a vertex to a boundary edge 0.5
min. length of a boundary edge before creation of

a midpoint (Å)
10

initial number of minimization steps 500
subsequent number of minimization steps 50
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to be found close to each other. This is due, in part, to the
preconditioning process, in which defects are annealed out
to obtain the required defect ratios, resulting in regions of
perfect hexagonal ordering with isolated groups of defects.
This could be avoided by introducing a more complex
preconditioning process, involving a full three-dimensional
treatment of the mesh. However, additional experimental data
on the proximity of 5- and 7-ring defects would be required
before the inclusion of further complexity can be justified.

Identifying the Most Favorable Sites for Fluorination
Using Electronic Structure Calculations. The preferred sites
for fluorination of a representative graphene structure were
determined by ab initio electronic structure calculations. The
initial structure contained 2 seven-membered rings, 2 five-
membered rings, and 12 six-membered rings, with a total of
47 carbon atoms and is shown in Figure 7. Eighteen hydrogen
atoms were added around the edge of the sheet to satisfy
bonding and ensure a closed-shell singlet ground state. The
relative energies and the local topology of the 19 fluorination
isomers investigated are shown in Table 2, with the number-
ing of the fluorination sites and the lowest energy structure
as illustrated in Figure 7. HOMO-LUMO gaps varied
between 2 and 6 eV, indicating that the structures are not
metallic. It can be seen that most of the low-energy structures
are those in which the fluorination occurs at or close to the
internal 5-membered ring. This can be rationalized by the
positive curvature which already exists at a 5-ring defect.
Only a small distortion of the carbon framework is then
required to add an additional bonded neighbor and form a
tetrahedral carbon atom. Many of the high-energy sites are
those around the internal 7-membered ring, where the
negative curvature makes it unfavorable to add a fourth
bonded neighbor. However, the details are not so clear-cut.
Significant distortions of the 7-membered ring appear to be
tolerated at some positions making fluorination at sites 18
and 19 more favorable than would perhaps be expected. It
is likely that this is caused by the proximity of the
5-membered ring

Conclusions

A rapid and robust algorithm has been developed to facilitate
the automated generation of graphene sheets containing a
majority of 6-membered rings, with a small, user-specified,
number of 5- and 7-ring defects.

In comparison with existing methods,9,21 this algorithm
allows the generation of small fragments of graphene (tens
to thousands of atoms) according to user-defined criteria
within a few minutes on a desktop PC. There is no
requirement for periodic boundary conditions or computa-
tionally expensive simulations (which can be of the order
of days9). After initial generation of set of random coordi-
nates, which in the present work requires no special
procedures to fulfill artificial periodicity or chemical bonding
requirements, the central iterative procedure uses determin-
istic methodology (triangulation followed by minimization).
Chemical information, in the form of an interatomic potential,
is only added for the minimization step (which represents
the most expensive part of the procedure). Chemical bonding
is determined solely by the results of triangulation (which
also automatically ensures the correction coordination num-
ber), meaning that no special procedures need to be incor-
porated in order to control bond making and breaking
processes.9,21 As a result, the algorithm presented here
provides a simple and efficient solution to the generation of
small, defective graphene sheets.

Once generated, these structures can be used in electronic
structure calculations to identify favorable sites for func-
tionalization by fluorination. The results obtained indicate
that fluorination will occur preferentially at 5-ring defects,
although the overall energetics depend on the details of the
local topology. A further use of the structures generated could
be in the simulation of STM images, providing a further tool
for the interpretation and understanding of experimental
observations.

Acknowledgment. D.R.N. is grateful to Peter Harris
for introducing him to this interesting problem and for helpful
discussions.

Figure 7. Left: The initial graphene structure showing the
numbering of possible fluorination sites. Right: Structure of
the most stable fluorinated structure.

Table 2. Relative Energies of a Fluorinated Graphene
Sheet with Defects

site Erel/kJ mol-1 local topologya

16 0.0 5-6-6
2 87.9 5-6-6
14 114.1 6-6-6
18 154.3 6-6-7
19 196.4 6-6-7
17 200.2 5-6-6
10 213.2 5-6-6
15 216.4 5-6-6
6 232.4 6-6-7
12 234.3 6-6-7
1 238.7 5-5-6
11 249.2 5-6-7
13 267.7 6-6-6
8 269.1 6-6-7
4 282.8 6-6-6
3 287.9 6-6-6
9 309.9 6-6-7
5 319.0 6-6-7
7 333.6 6-6-7

a The local topology is defined in terms of the sizes of the three
rings that share a common vertex at the position in question. For
example, a vertex that is shared between three 6-membered rings
(and hence expected to be in a locally planar environment) is
labeled “6-6-6”. The local topology gives an indication of the
expected curvature (zero, positive, negative) of the graphene
fragment at the position of interest.
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Abstract: Finding the lowest-energy geometry of a molecule or collection of molecules is a
fundamental challenge of modern computational chemistry and is closely related to the more
general problem of optimizing a function. Temperature annealing, popularly called simulated
annealing, is a powerful and commonly used technique, but it is not well suited to conformational
sampling of long, oligomeric molecules. A method is presented herein that incorporates pressure
as an optimization parameter to complement temperature annealing, and several tests of its
effectiveness are described. Bayesian statistical analysis shows that pressure-temperature
annealing confers no advantage in control simulations of Lennard-Jones particles, but it yields
lower-energy structures than pure temperature annealing with significant credibility for two model
polyethers, monoglyme (CH3OCH2CH2OCH3) and tetraglyme [CH3(OCH2CH2)4OCH3].

1. Introduction

Polymers or long-chain molecules designed to model poly-
mers are generally difficult candidates for computational
study because their multiple conformations make it difficult
to find low-energy structures. This manifests as a glassy
potential energy surface that complicates application of
computational methods1 typically employed in studying the
structural and thermodynamic properties of these systems
such as molecular dynamics (MD) or Monte Carlo (MC)
methods.2 Generally, MD and MC computations are supple-
mented by techniques such as simulated (temperature)
annealing to improve the quality of the results.3-9 This is
especially true in structural studies, particularly when search-
ing for low-energy states of such systems.6-8 Alternative
methods are available and are commonly used,10,11 as no
one class of optimization methods is suited to all problems.
A technique is presented here that expands temperature
annealing by using pressure as an additional control param-
eter. This extra parameter is tested to assess its utility in the
special case of frustrated, glassy systems. First, we review
optimization techniques employed in the study of complex
systems, such as those studied here. Then, we explain the

advantages of the temperature annealing approach and show
how the addition of pressure as a parameter modifies the
method. Finally, we present statistical analyses that demon-
strate the value of our proposed approach.

1.1. Popular Molecular-Dynamics-Based Optimiza-
tion Methods. One of the most important pieces of informa-
tion useful to understanding chemical phenomena is structure.
Understanding the spatial arrangement of the atoms contained
in a chemical system might seem rather basic, but it is
necessary to provide insights into the thermodynamics,
reactivity, and spectroscopic properties of the system. Of
course, determining the structure of chemical systems can
be accomplished experimentally using X-ray crystallogra-
phy,12 NMR spectroscopy,13 and other methods.14 Quite
commonly now, structural models are proposed based on
computational studies. Using the quantum approach,15 struc-
tures of small or even medium-sized molecules are routinely
determined to great accuracy. For larger systems, including
condensed-phase structures, accuracy is traded for compu-
tational efficiency, and molecular mechanics methods are
employed.16 Molecular mechanics methods take, for ex-
ample, the AMBER force field17 and use optimization
methods traditionally used in mathematics, such as the
conjugate gradient algorithm,18 to find minima of the energy* Corresponding author e-mail: rawheeler@ou.edu.
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function. This is a useful approach, but it has limited utility
for a variety of reasons, including limiting the search to
finding local minima “near” the starting structure. More
commonly used is molecular dynamics or Monte Carlo,2

coupled with some optimization algorithm. Some popular
algorithms, including temperature annealing (usually called
simulated annealing),4 a popular algorithm fundamentally
important to this contribution, are discussed below.

1.1.1. Locally Enhanced Sampling. Locally enhanced
sampling (LES)19 is a technique that was first proposed in
1990 (the original idea was taken from another method)20

and was initially designed to improve the search for diffusion
paths of small ligands inside a protein matrix. It has since
become a moderately popular optimization method, useful
when the structure of a small part of the system is needed in
relation to the remainder. This small part of the system is
copied several times. None of the copies directly interacts
with the others, but instead, each one interacts directly with
the remainder of the system, generally referred to as the bath.
Atoms in the bath interact normally with each other, but they
interact with the average of each of the copied systems. It is
often claimed that this algorithm allows the interaction
between the copied parts of the system and the bath to be
smoothed. Specifically, it has been reported that any barriers
resulting from this interaction would be decreased propor-
tionally to the number of times the smaller part of the system
was copied.21 Individual copies frequently gain energy during
the simulation, allowing for a sort of “tunneling” behavior.
Thus, each copy can be given a greater allotment of energy
than in traditional molecular dynamics, and so can better
explore the potential energy surface, until the energy is
redistributed to the other systems via the bath interaction.22

The method has been used to explore potential energy
surfaces in several situations.11,21,23-26 The trajectory map-
ping application used in the original article is an important
example, and there have been other applications of LES to
finding low-energy structures.11,21,23-26 Although not as
commonly used as the method described in the next section,
LES is still a relatively popular method and has been
implemented in a variety of molecular dynamics packages
in common use.

1.1.2. Replica Exchange. The replica-exchange molecular
dynamics simulation method is quite popular. First proposed
in 1999,10 the method has a relatively straightforward
implementation. The entire system under study is replicated
a number of times. Each replica is independent and is
held at a different temperature, with the set of replicas
spanning a range of temperatures. The systems are allowed
to evolve using molecular dynamics for a set number of time
steps, and then, the temperatures of two systems are
exchanged if they pass a Metropolis test. Because the
probability of acceptance is low if the temperatures vary too
much, only exchanges between systems of neighboring
temperatures are typically attempted.

Generally described as finding minima on the free energy
surface, replica exchange has been used to study a variety
of systems, including polypeptides, proteins, and poly-
mers.10,27-32 The method has shown great utility in mapping
low-energy structures of peptide systems, although many

other examples can be found in the literature. This method
owes a large part of its existence to temperature annealing,
as the methods are quite similar in approach, although
temperature annealing has been in use for a much longer
time.

1.2. Temperature Annealing. The idea that a state having
a given energy is populated with a calculable relative
probability is one of the most fundamental ideas in statistical
physics and is immortalized (at least for the canonical
ensemble) in the Boltzmann distribution. Given this link
between such a readily obtainable quantity (the energy) and
relative population, it should come as no surprise that an
optimization strategy, temperature annealing, would be
formed from it. Simply put, temperature annealing4 is a
process in which an ensemble of states of a system is
generated corresponding to high-energy conditions (by
raising the temperature) and the system is allowed to evolve
toward a lower-energy state. As cooler states are generated,
the system tends to settle into areas of low energy, because,
at lower temperatures, these areas are more likely to be
populated. Raising the temperature initially widens the search
area by increasing the volume of phase space available to
be populated because the systems have a greater probability
of surmounting barriers separating regions of phase space.
Then, lowering the temperature traps the system in wells
with a probability that depends on their energy and phase-
space volume.

One surprising aspect of temperature annealing is that,
despite its specific link to statistical physics, it has shown
its worth in a variety of fields as a general-purpose optimiza-
tion technique.4 Such general use can be contemplated
because a wide variety of problems exist that allow a cost
function analogous to the energy to be defined. In one famous
example, the traveling salesman problem, the object is to
find the quickest path connecting two points along some
complicated linkage structure sharing features found in road
maps. The energy is represented by a cost function generally
chosen to be a function of the number of nodes the salesman
must cross. This function is optimized, generally, using a
Monte Carlo procedure where each newly generated state is
compared with the previous one and either accepted or
rejected according to the Metropolis criterion.2 The temper-
ature is a fictitious parameter, but by increasing it, the
algorithm accepts trial moves with a greater frequency,
thereby allowing states of higher “energy” to be visited.
Lowering the temperature biases the simulation into lower-
energy states. This behavior is exactly analogous to the role
of temperature in condensed-phase systems. Similar methods
have been used to solve problems in electrical engineering
to design circuits and in signal processing to process images
and sounds.4 Finally, the most traditional area of application
is in finding energy minima in condensed systems either by
using the Metropolis/Monte Carlo method outlined above
or by using molecular dynamics as the ensemble-generation
engine.2

1.3. Role of Pressure. Complementing temperature an-
nealing with pressure annealing to locate low-energy geom-
etries more quickly has the potential of improving the quality
of temperature annealing searches. As described above, one
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role of temperature is to help define the phase-space area to
search in a temperature annealing optimization. If the system
is located in an area of phase space separated cleanly from
another by a large barrier, the separated area will only rarely
be visited within the calculation. This situation requires a
particularly long simulation to obtain an accurate result. As
the temperature is raised ever higher, the structure becomes
more likely to surmount such a barrier; however, raising the
temperature can become counterproductive by causing the
simulation to become unstable or increasing the simulation
time. Consequently, making more sensible changes to other
simulation variables such as pressure is an avenue worth
exploring. Adjusting the pressure indirectly affects the
optimization because the pressure determines the volume
(and thus the density) of the system, which, in turn, affects
the amount of phase space available to be explored. It
increases the fraction of explorable phase space by a different
approach than using temperature alone. The effects of such
changes are explored below.

1.4. Objectives of This Work. Several systems are tested
here to illustrate the benefits that using pressure as an
optimization control parameter can add to a temperature
annealing optimization strategy. First, the method is tested
on a system composed of Lennard-Jones particles.33 This
system is relatively simple and is used here are a control.
Because the glassy nature of their energy surfaces makes
conformational trapping a serious issue,1 simulations of
polymers and polymer models are expected to benefit greatly
from pressure annealing. Thus, we also test two models for
the polymer polyethylene oxide (PEO)34-36 called monogly-
me and tetraglyme (see Figure 1). PEO is interesting for
several applications, including use as the matrix for polymer-
ion batteries.37,38 Monoglyme is an oligomer containing one
unit of the PEO polymer, tetraglyme contains four units, and
both of these systems have previously been studied.34-36

2. Statistical Mechanical Basis of Pressure
Annealing

Temperature annealing is among the most frequently used
optimization methods in chemistry for a variety of reasons.
First, the method makes a great deal of intuitive sense and
can be explained almost entirely using basic appeals to logic.
On the other hand, temperature annealing has been formally
proven to be an optimization technique and is on a firm
mathematical basis.5,39 It has even been shown that, when a
proper cooling schedule is used, the method is guaranteed
to find the global minimum of the system.39 Although, in
practice, the conditions required to realize the promise of
temperature annealing are impossible to achieve completely,
the fact that the method could, in principle, attain success is
quite appealing. Perhaps this combination of being easily
understood, effective, and firmly rooted in theory explains
why temperature annealing is one of the most popular
optimization methods in use, not only in chemistry, but also
in a wide variety of other fields. What follows is an abridged
summary of temperature annealing, to substantiate the
pressure-temperature annealing procedure proposed in this
work.

2.1. Temperature Annealing. A simple, qualitative way
of explaining why temperature annealing works starts by
noting that low-temperature states corresponding to low
energies should be populated with greater probability than
higher-energy states, whereas at higher temperatures, the
populations are less strictly related to the energy of the state.
This is due to the flattening of the probability distribution
observed at higher temperatures. In the high-temperature
phase of the optimization, the system wanders and explores
phase space with relatively lax restrictions and freezes into
the states of higher probability at lower temperatures. It has
been proven that repeated application of heating-cooling
cycles is guaranteed eventually to find the lowest-energy
states.5,39 It is also instructive to note that temperature
annealing finds the minimum of the energy E by manipulat-
ing the parameter � in the expression

Q(N, V, T) ) 1
C ∫-∞

∞
e-�EΩ(N, V, E) dE

where T is the temperature (� is the inverse of the product
of the temperature and the Boltzmann constant), V is the
volume, C is a normalization constant, and N is the number
of particles. Q is the canonical partition function, and Ω is
the microcanonical partition function. In this framework,
simulated annealing can be interpreted as finding the lowest
energy for a system containing N particles in a volume V.

2.2. Pressure Annealing. To understand how pressure can
be used as an optimization variable, consider an expression
similar to the canonical ensemble partition function written
above, but for a related ensemble. Because the pressure
divided by the temperature is conjugate to the volume,40 we
know that if �p (where p is the pressure of the system) is
fixed, thus allowing the volume to fluctuate, we can write a
partition function for that ensemble as

M(N, �p, E) ) 1
C ∫0

∞
e-�pVΩ(N, V, E) dV

Figure 1. Structures of the oligomeric models used in this
work: (a) monoglyme and (b) tetraglyme. These structures
are oligomeric models of (c) the polymer polyethylene oxide.

Finding Low-Energy Structures of Oligomeric Molecules J. Chem. Theory Comput., Vol. 5, No. 7, 2009 1885



All of the variables are the same as described in the previous
section, and M is the partition function for the NPE ensemble.
This expression for the partition function is reasonable given
that Ω ∼ VN is weighted by e-�pV as V gets large. It is also
apparent that, as the pressure increases, the volume decreases.
Conversely, decreasing the volume increases pressure. When
the pressure vanishes, the volume becomes unbounded. By
manipulating �p as the temperature was manipulated in
temperature annealing, the function V is minimized. This can
be interpreted as finding the smallest volume able to contain
N particles with an energy E and implies that pressure
annealing alone is unlikely to prove effective as an energy
optimization strategy.

2.3. Benefit to Including Pressure in Simulated
Annealing Optimizations. In the isothermal-isobaric en-
semble (NPT), pressure and temperature are fixed in the
partition function. Using this knowledge, we constructed an
optimization strategy to take advantage of pressure as a
parameter alongside temperature in a pressure-temperature
simulated annealing strategy. From the analysis in the
previous two sections, it is clear that using pressure as an
optimization parameter does not act to optimize the energy;
however, the pressure does control features of a simulation
that can be exploited to aid in simulated annealing. If the
pressure is fixed at a small value, the density of the system
decreases as the volume of the system increases. For some
systems, this is not particularly helpful for optimization, but
for bulky systems where geometry changes are hindered at
the density of interest, increasing the available volume can
be quite helpful. By allowing the molecules to separate,
intramolecular energies can be minimized more easily. Then,
by increasing the pressure, the molecules can be compressed
efficiently into a low-energy state, optimizing the volume
using the procedure explained in the previous section. Using
these principles, pressure-temperature simulated annealing
strategies can be designed. The strategy presented here
consists of four steps. The first step allows an expansion to
occur from the initial state by fixing the temperature and
pressure at low values. After the expansion, the volume is
fixed, and traditional temperature annealing is performed on
the expanded system. Third, after temperature annealing is
completed, the pressure is fixed to a large value, and the
temperature remains fixed at the final annealing temperature.
Finally, after the compression, the system’s energy is
minimized. The totality of the method allows two complica-
tions of temperature annealing to be addressed. First, in
condensed-phase systems of molecules with hindered rota-
tions, inducing intramolecular conformational changes can
be difficult. This can also lead to difficulty in changing the
way the system packs.

Understanding how lowered density might benefit a
simulation is not difficult. Imagine the simple two-dimen-
sional system depicted in Figure 2. This system consists of
a string of eight beads connected to each other in a coil by
springs of length r. The beads do not interact except through
the springs and can be considered hard spheres. The entire
coil is contained in a box with sides of length L. If an
optimization algorithm seeks to characterize the low-energy
states of this system, moving from the counterclockwise coil

depicted in the figure to the clockwise coil would be an
important transition. The height of the lowest barrier between
these two states determines the difficulty of making the
transition. If the length of the box is 8r or greater, no barrier
to the transition exists because the system can align as a

Figure 2. Simple two-dimensional model representing a
coiled molecule. The molecule exists inside a box whose walls
are treated as large potential energy barriers, each side of
which has length L. The molecule is composed of beads
connected by springs, whose equilibrium length is r. When
the length of the side of the box is greater than 7r, the
molecule can change coil orientation without needing to
surmount any barrier, illustrating that increasing the available
volume can make conformational searches easier.

Table 1. Final Energies (kcal mol-1) Determined by
Temperature Annealing and Pressure-Temperature
Annealing Algorithms for Each of the 50 Lennard-Jones
Systems Studieda

system
temperature
annealing

pressure-
temperature
annealing system

temperature
annealing

pressure-
temperature
annealing

1 -953.54 -959.72 26 -955.89 -954.60
2 -955.53 -958.15 27 -954.38 -957.08
3 -951.82 -941.17 28 -957.22 -957.02
4 -963.88 -958.96 29 -955.10 -964.38
5 -959.86 -957.37 30 -953.17 -954.55
6 -955.72 -962.54 31 -953.00 -954.04
7 -958.82 -960.63 32 -953.45 -953.38
8 -958.23 -952.44 33 -942.91 -955.55
9 -957.33 -957.85 34 -956.65 -949.70
10 -952.84 -955.26 35 -955.83 -955.21
11 -960.52 -958.35 36 -957.34 -959.68
12 -944.61 -951.79 37 -960.03 -959.50
13 -955.15 -957.99 38 -956.19 -948.28
14 -960.71 -947.03 39 -957.45 -960.63
15 -956.07 -951.94 40 -961.74 -956.73
16 -955.63 -960.72 41 -952.40 -962.08
17 -960.70 -953.16 42 -953.11 -961.18
18 -958.62 -956.65 43 -958.97 -960.29
19 -956.99 -957.29 44 -959.52 -961.30
20 -959.05 -953.37 45 -959.73 -959.84
21 -959.97 -956.79 46 -952.60 -958.94
22 -957.59 -955.11 47 -945.38 -958.56
23 -957.30 -954.24 48 -953.92 -963.10
24 -960.38 -945.11 49 -953.77 -956.70
25 -958.37 -952.55 50 -958.79 -955.04

a Each pair of simulations started from the same randomly
generated initial structure. Neither method seems to be superior to
the other, as the lowest energy was found with equal likelihood by
the two methods.
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straight line while maintaining each of the springs at its
equilibrium length. If the box is smaller than the radius of
the semicircle, the system cannot make the transition to the
low-energy state. Systems complicated enough to be of
chemical interest must account not only for this constraint,
but also for different packing arrangements. Both are dealt
with by the pressure annealing procedure. Choosing the
details of pressure annealing simulations with these facts in
mind are important to a successful simulation.

3. Model Systems and Procedure

Several systems were used to compare pressure annealing
with temperature annealing. These systems range from a
relatively simple model Lennard-Jones system to oligomeric
models of polyethylene oxide. In each case, two sets of
simulations were performed. First, traditional temperature
annealing was performed. In these simulations, the system
was elevated in temperature starting from 25 to 1025 K over
the course of a simulation on the nanosecond time scale.
After the temperature annealing simulation, the system was
further minimized using a conjugate gradient method. The
minimized structure and energy were reported. Second,
pressure-temperature annealing was performed. These simu-
lations can be divided into three distinct steps. The first step
involves heating while allowing the system to expand slowly.
The second phase allows the system to expand dramatically
while maintaining the hottest temperature of the initial
annealing cycle. Finally, the system is compressed to its
original volume while being cooled. The system is then

subjected to the same minimization procedure as in the
simulated annealing simulation, and the final minimized
structure and energy are reported.

3.1. Particles with Only Lennard-Jones Interactions.
This model system contained particles of argon with a mass
of 40 amu. Here, the force between the particles is the (12,6)
Lennard-Jones model for van der Waals forces, written as

V(r) ) 4ε(σ12

r12
- σ6

r6 )

Table 2. Final Energies (kcal mol-1) Determined by
Temperature Annealing and Pressure-Temperature
Annealing Algorithms for Each of the 25 Monoglyme
Systemsa

system temperature annealing
pressure-temperature

annealing

1 -734.8209 -741.6008
2 -722.3525 -741.6008
3 -721.0294 -741.6008
4 -735.0073 -741.6008
5 -737.5804 -741.6008
6 -729.8086 -741.6008
7 -728.0307 -741.6008
8 -741.7752 -741.6008
9 -727.7178 -741.6008
10 -730.5577 -741.6008
11 -729.5520 -736.1320
12 -729.5520 -737.8802
13 -729.5520 -738.9512
14 -729.5520 -740.6107
15 -729.5520 -725.5618
16 -729.5520 -734.7025
17 -729.5520 -717.1497
18 -729.5520 -732.1472
19 -729.5520 -733.4708
20 -729.5520 -741.2944
21 -744.3963 -715.6028
22 -737.9864 -751.5224
23 -719.8457 -742.0861
24 -734.7466 -737.3870
25 -728.8936 -733.7409

a Each pair of simulations started from the same randomly
generated initial structure. The pressure-temperature annealing
algorithm preferentially gave the lowest energy approximately 80%
of the time.

Table 3. Final Energies (kcal mol-1) Determined by
Temperature Annealing and Pressure-Temperature
Annealing Algorithms for Each of the 25 Tetraglyme
Systemsa

system temperature annealing
pressure-temperature

annealing

1 -105.0748 -103.9599
2 -98.6349 -99.8905
3 -100.5817 -107.2664
4 -105.0766 -105.9834
5 -106.7726 -98.3929
6 -102.2849 -101.1396
7 -114.2732 -102.1396
8 -107.0713 -107.6627
9 -105.9728 -107.8258
10 -98.4871 -100.2481
11 -81.9171 -91.4357
12 -118.1657 -107.4743
13 -91.2899 -98.9836
14 -96.3824 -124.9147
15 -83.3597 -110.0198
16 -100.6137 -116.6695
17 -110.3598 -101.1773
18 -87.3115 -108.4409
19 -101.0185 -113.5207
20 -103.8985 -109.7915
21 -94.2803 -108.7402
22 -89.5132 -94.8436
23 -108.8482 -100.1544
24 -87.5746 -96.8615
25 -97.6049 -94.4017

a Each pair of simulations started from the same randomly
generated initial structure. The pressure-temperature annealing
algorithm preferentially gave the lowest energy approximately 70%
of the time.

Figure 3. Radial distribution function formed from the data
taken from the lowest-energy structure found in the Lennard-
Jones simulations. It is representative of our results and
compares well with previously obtained results.
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The parameters for argon were taken from the literature,41

and the simulation was performed using the NAMD pro-
grams42 with a time step of 1 fs and a nonbonded cutoff of
12 Å. Each simulation involved 540 particles randomly
placed inside the box and then minimized for 5000 conjugate
gradient minimization steps. For the temperature annealing
calculations, the volume of a cubic box was fixed at 30 Å
per side. The temperature ranged from 25 to 1025 K in 100
K increments with 50-ps simulations at each temperature.
After the highest temperature had been reached, the simula-
tion was run for 200 ps and then cooled by reversing the
heating schedule. After the system had returned to 25 K, a
final equilibration was performed for 50 ps. The final
structure and energy were obtained after a 5000-step
conjugate gradient minimization. The pressure-temperature
annealing simulations started from the same configuration
as the corresponding simulated annealing run. They differed
in the following ways: During the heating phase, the pressure
was fixed at 0.1 bar, and the system was allowed to expand.
During the first 50 ps, the system was held at 1025 K, and
the pressure remained at 0.1 bar. During the next 100 ps at
1025 K, the system was allowed to expand dramatically, as
the pressure was reduced to 0.025 bar. By the end of this
period, the box generally expanded to approximately 40 Å

on each side. During the final 50 ps, the system was held at
1025 K. During the rest of the cooling phase, the pressure
was increased to as much as 1000 bar, until the system
returned to its original volume, and then the volume was
fixed. The final 50-ps equilibration and 5000-step minimiza-
tion were then performed, and the final energy and structure
were recorded.

3.2. Monoglyme. Monoglyme (Figure 1) is the smallest
oligomeric analogue of the polymer polyethylene oxide
(PEO), containing a single ethylene oxide repeat unit, capped
with methyl and methoxy groups on either end. The simula-
tions were performed using NAMD and a force field
previously derived for PEO analogues.34 Each of the simula-
tions was performed after 120 molecules had been placed
in a random orientation and then placed randomly in the box
ensuring that no two atoms were closer than 1.9 Å apart.
Again, the traditional temperature annealing runs were
performed at a fixed volume in a cubic box having sides of
length 26.25 Å. The procedure was exactly as described
above for argon, with the only differences noted here. During
the heating phase of the pressure-temperature annealing
procedure, the pressure was set for 0.05 bar, but it was
lowered to 0.025 bar to expand the system. The final box
size was approximately 110 Å. The system was compressed
during the cooling phase with a pressure of as much as 400

Figure 4. Pair of histograms detailing the population of triad
types found in a representative monoglyme system (a) before
and (b) after the simulation was performed. In the initial state,
a wide variety of triad combinations existed in the system.
After the optimization procedure, only two showed appreciable
populations, both of which represented low-strain structures
as determined by previous work.

Figure 5. Pair of histograms detailing the population of triad
types found in a representative tetraglyme system (a) before
and (b) after the simulation was performed. In the initial state,
a wide variety of triad combinations existed in the system.
After the optimization procedure, the populations shifted. Triad
combinations shown to be common in tetraglyme systems
increased in population, whereas those rarely represented in
previously published studies decreased.
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bar until the original volume was restored, although as the
volume neared its original value, the pressure was slowly
reduced to avoid overcompression.

3.3. Tetraglyme. Tetraglyme (Figure 1) is an oligomeric
analogue for polyethylene oxide (PEO) containing four repeat
units. The simulations were performed using NAMD and
the same force field as used for monoglyme and intended
for PEO analogues.34 Each of the simulations was performed
after 50 molecules had been placed in a random orientation
and then placed randomly in the box ensuring that no two
atoms were closer than 1.9 Å. Again, the traditional
temperature annealing runs were performed at a fixed volume
in a cubic box having sides of length 26.5 Å. The procedure
was exactly as described above, with the only differences
described here. During the heating phase of the pressure-
temperature annealing procedure, the pressure was set to 0.1
bar, but it was lowered to 0.025 bar to expand the system.
The final box size was approximately 100 Å. The system
was compressed during the cooling phase with a pressure
of 500 bar until the original volume was restored, although
as the volume neared its original value, the pressure was
slowly reduced to avoid overcompression.

3.4. Procedure. For each of the systems described above,
a number of random structures were generated. For the
Lennard-Jones system, 50 random configurations were gen-
erated. For the polymer models, 25 configurations were
generated. For each of these random structures, both tem-
perature annealing and pressure annealing simulations were
performed, and the final energies and structures were
recorded.

4. Results and Discussion

The data collected in the simulations described in the
previous section demonstrate that the use of pressure as a
coordinate in optimization simulations significantly affects
the energies of the structures obtained. For 52% of the
Lennard-Jones simulations, 84% of the monoglyme simu-
lations, and 68% of the tetraglyme simulations, the energy
of the state produced by the pressure annealing procedure
was lower than that produced from the same starting
structure but by following the traditional temperature
annealing procedure. Each of the final states was charac-
terized by a variety of structural measurements including
radial distribution functions, radii of gyration, mean square
end-to-end differences, and characteristic ratios. Torsion
triad analysis was also performed for the polymer model
systems. Each of the structures produced structural data
consistent with published results.34-36 Following is a more
detailed look at the results, along with a discussion of
their significance.

4.1. Energy Results. The final energies from each simu-
lation started from a random structure are listed in Tables
1-3. They reveal two interesting features. First, of the 50
simulations performed on the Lennard-Jones system, only
52% of the random structures yielded a lower energy during
the pressure annealing simulations. This indicates that
pressure does not have a significant effect on the results of
the simulation, as the results are randomly distributed within
the two simulation techniques. For the other two types of

simulations, the effect is more pronounced. For the monogly-
me simulations, the pressure annealing method generated a
lower energy 84% of the time, and for the tetragylme
simulations, pressure annealing generated a lower energy
68% of the time. Whereas the Lennard-Jones system shows
no apparent advantage of pressure annealing, the bulkier
models adopt structures of noticeably lower energies when
the pressure annealing method is used.

4.1.1. Bayesian Statistical Analysis. To answer more
precisely the question of whether simulations using pressure
plus temperature annealing give lower-energy structures than
simulations using temperature annealing alone, we appeal
to Bayesian statistics. For similar questions that have a binary
success/fail answer, the binomial distribution has been used.
This discrete function

f(θ;N, k) ) (N
k )θk(1 - θ)N-k

defines the probability for k successes to occur in a data set
of N trials, where the probability of success is θ for each
individual trial.43 In the classic example of a coin toss, we
can define a “success” as the coin landing on heads, and we
generally believe θ ) 0.5. In our present work, we can define
a success as a trial where the pressure annealing simulation
provides a lower energy than the corresponding temperature
annealing simulation. In our work, however, we are interested
in estimating the value of the unknown probability θ. This
value indicates the fraction of times we would expect
pressure annealing to outperform temperature annealing given
a random starting structure.

An estimation of θ can be readily achieved using Bayesian
statistical analysis.44 Even more usefully, Bayesian analysis
allows the “credibility” that θ lies within a given interval to
be estimated. This is accomplished by application of Bayes’
theorem. This theorem links two complimentary conditional
probabilities together

P(θ|D) ∝ P(D|θ) P(θ)

In the language of Bayesian statistical analysis, P(θ) is called
the prior distribution; P(D|θ) is the conditional probability
that our data, D, should be observed given any probability
θ; and P(θ|D) is called the posterior distribution and
represents our revised beliefs about the problem given both
our prior opinion and our observed data. Thus, we can
estimate the conditional probability, P(θ|D), if both P(θ) and
P(D|θ) are known or can at least be plausibly represented.

We use the previously introduced binomial distribution
to represent the conditional probability of our data (given
θ). We choose the beta distribution43

g(θ;R, �) ) (Γ(R + �)
Γ(R) Γ(�))θR-1(1 - θ)�-1

to represent our prior distribution. The beta distribution is a
continuous-variable analogue of the binomial distribution (as
R and � can take real values) and is chosen because it is a
conjugate prior distribution. A prior distribution is conjugate
when the chosen prior and conditional probabilities combine
to give a posterior distribution with the same form as the
prior distribution.
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We analyze our simulations using four distinct choices
for the prior distribution. In the first case, an “unbiased”
distribution, we select R ) 1 and � ) 1. This choice means
that any choice of θ has equal probability. In the second
case, an “even” distribution, we select R ) 25 and � ) 25.
This choice gives almost zero probabilities for values of θ
far from 0.5, but relatively high probabilities in that region.
The other two choices give high probabilities for choices of
θ higher than 0.5 (the “over” distribution) and for choices
of θ lower than 0.5 (the “under” distribution). These
correspond to functions that select R ) 25 and � ) 5 and R
) 5 and � ) 25, respectively.

Thus we model our posterior distribution with the follow-
ing functional form

P(θ|D) ) Cf(θ;N, k) g(θ;R, �)

) ( Γ(N + R + � - 1)
Γ(R + k) Γ(N - k + �)θk+R-1(1 - θ)N-k+�-1

and we can determine the credibility that θ > 0.5 (which is
expected if the pressure annealing technique is a better
alternative than temperature annealing) by finding the value
of the integral

I ) ∫0.5

1
P(θ|D) dθ

The results of this analysis are given in Table 4.
The results are consistent with our analysis in the previous

section. The control test involving the Lennard-Jones simula-
tions indicates a minimal advantage to using pressure
annealing, whereas both the monoglyme and tetraglyme test
cases indicate a particularly clear advantage to pressure
annealing. Even when analyzed using a prior distribution that
is strongly biased against the favorability of pressure
annealing, the credibility for the interval 0.5 < θ < 1 is still
34% for monoglyme.

4.1.2. Implications of Statistical Analysis. The results of
the previous section support the hypothesis that the expansion
of the system under low pressure, followed by compression,
allows the system to pack more efficiently. The point
particles represented in the Lennard-Jones simulations have
little packing complexity, whereas each of the polymer
models has not only intermolecular packing concerns but
also intramolecular packing to take into account. Expansion
frees the system to perform intramolecular reorganization,
and compression helps find an optimal intermolecular ar-
rangement. Based on these results, using pressure as an
optimization parameter seems to benefit the search for low-
energy structures of hindered systems.

4.2. Structural Results. It is important to verify that each
of the states generated correspond to relevant structures that

have been previously observed. Therefore, each of the states
generated by these methods was characterized in a variety
of ways and checked against previous results. For the
Lennard-Jones simulations, pair radial distributions functions
were generated and compared with those of similar systems.
For the polymer models, radii of gyration and mean square
end-to-end distances were calculated and compared. These
values allowed calculation of the system’s characteristic ratio,
an additional check. Finally, the torsion angles along the
backbone of the polymer models were analyzed using a
technique called torsional triad analysis, which can be further
compared with previous results. In general, the states
generated during the course of this work match previous
results well and imply that calculated average structures are
similar to those reported previously.34-36

4.2.1. Radial Distribution Functions. The radial distribu-
tion function counts the density of atom pairs within a certain
distance window from each other, relative to the density of
a bulk fluid. The radial distribution function can be repre-
sented as

g(r) ) V

N2〈 ∑
i

∑
j*i

δ(r - rij)〉2

where r is the distance between atom pairs, V is the volume,
N is the number of particles in the system, and rij is the
distance between a specific atom pair. In Figure 3, the pair-
radial distribution function representing the lowest-energy
Lennard-Jones system found in this work is shown. This
radial distribution function is typical of fluids with a relatively
high degree of order. It is zero until approximately 3.9 Å
(the distance of closest approach allowed by the interatomic
potential function). The high initial peak results from nearest-
neighbor contacts at a distance approximately equal to the
sum of Lennard-Jones radii for the particles. More distant,
less distinct peaks have a similar interpretation. This figure
is typical of the results generated in this work for these
systems and is a good comparison with previous work
performed on like systems.41

4.2.2. Radius of Gyration, Mean Square End-to-End
Distance, and Characteristic Ratio. The remaining tests in
this section were used to characterize the structures of the
two oligomeric systems studied here. The three measure-
ments described in this section are interrelated and measure
bulk properties of the molecules under study; specifically,
they describe the arrangement of the atoms in relation to
the center of mass or the ends of the molecule. The first
measurement, the radius of gyration, is defined as45

S2 ) 1
N ∑

k)1

N

||rk - rmean||
2

Table 4. Results of the Bayesian Statistical Analysis To Assess the Viability of Pressure-Temperature Annealing To
Complement Temperature Annealing When Searching for Low-Energy Structures of Constrained Systemsa

Lennard-Jones systems
(N ) 50, k ) 26)

monoglyme systems
(N ) 25, k ) 21)

tetraglyme systems
(N ) 25, k ) 17)

unbiased: R ) 1, � ) 1 0.610 0.9997 0.962
even: R ) 25, � ) 25 0.580 0.976 0.852
over: R ) 25, � ) 5 0.994 0.99999999 0.99997
under: R ) 5, � ) 25 0.021 0.342 0.067

a Contents of the table indicate the credibility that θ > 0.5.
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and measures the extent to which the polymer’s mass
deviates from its center of gravity. It gives some indication
as to how tightly the polymer arranges itself. Of course, the
chemical and physical nature of the polymer determines this
value, which varies according to the physical conditions in

which the polymer exists. However, previous studies showed
that, for tetragylme, the value is approximately 20 Å2.35

Published data for monoglyme are unavailable. The mean
square end-to-end distance, R2, of the polymer is quite easily
defined. It is simply the distance from one end of the polymer

Table 5. Radius of Gyration (〈S2〉), Mean Square End-to-End Distance (〈R2〉), and Characteristic Ratio (Cn) for Each of the
Runs Involving Monoglymea

temperature annealing pressure-temperature annealing

system 〈S2〉 (Å2) 〈R2〉 (Å2) Cn 〈S2〉 (Å2) 〈R2〉 (Å2) Cn

1 12.64294 29.95462 4.131672 12.63144 30.05138 4.145018
2 12.642 29.25339 4.03495 12.63144 30.05138 4.145018
3 12.68264 29.04504 4.006212 12.63144 30.05138 4.145018
4 12.62215 29.71162 4.098154 12.63144 30.05138 4.145018
5 12.65295 29.33647 4.04641 12.63144 30.05138 4.145018
6 12.67993 29.25582 4.035286 12.63144 30.05138 4.145018
7 12.64122 29.19647 4.027099 12.63144 30.05138 4.145018
8 12.6627 29.50217 4.069265 12.63144 30.05138 4.145018
9 12.73361 29.27499 4.03793 12.63144 30.05138 4.145018
10 12.64571 29.5682 4.078372 12.63144 30.05138 4.145018
11 12.64617 29.42254 4.058281 12.65642 29.56905 4.07849
12 12.64617 29.42254 4.058281 12.69759 29.81467 4.112368
13 12.64617 29.42254 4.058281 12.67364 29.93132 4.128458
14 12.64617 29.42254 4.058281 12.66215 29.8647 4.119269
15 12.64617 29.42254 4.058281 12.64929 29.47143 4.065025
16 12.64617 29.42254 4.058281 12.63597 29.97904 4.13504
17 12.64617 29.42254 4.058281 12.69603 29.2091 4.028841
18 12.64617 29.42254 4.058281 12.72194 29.59777 4.082451
19 12.64617 29.42254 4.058281 12.67191 29.86696 4.119581
20 12.64617 29.42254 4.058281 12.64283 29.80467 4.110989
21 12.68304 29.33573 4.046308 12.67301 29.23696 4.032684
22 12.65052 29.78779 4.108661 12.68439 29.82505 4.1138
23 12.62334 29.23872 4.032927 12.72182 30.34298 4.185239
24 12.66012 30.01462 4.139948 12.6111 30.06649 4.147102
25 12.65458 29.26337 4.036327 12.61566 29.70253 4.096901

a Structural data compiled from the final structures from each run for both the temperature annealing and pressure-temperature
annealing simulations.

Table 6. Radius of Gyration (〈S2〉), Mean Square End-to-End Distance (〈R2〉), and Characteristic Ratio (Cn) for Each of the
Runs Involving Tetraglymea

temperature annealing pressure-temperature annealing

system 〈S2〉 (Å2) 〈R2〉 (Å2) Cn 〈S2〉 (Å2) 〈R2〉 (Å2) Cn

1 12.95637 124.1425 4.280776 12.76893 129.1815 4.454534
2 12.88302 118.7149 4.093617 12.89379 130.1666 4.488503
3 12.90877 132.4862 4.56849 12.898 129.0914 4.451428
4 12.86335 129.6162 4.469524 12.976 133.3446 4.59809
5 12.92801 124.0264 4.276772 12.94306 123.1806 4.247607
6 12.95901 119.7428 4.129062 12.9213 138.1344 4.763255
7 12.86378 130.5432 4.50149 12.90611 128.7697 4.440334
8 12.82505 135.4648 4.6712 12.91239 132.9224 4.583531
9 12.90405 132.8103 4.579666 12.84688 125.0199 4.311031
10 12.90094 116.7909 4.027272 12.91853 128.7571 4.4399
11 12.93324 124.7005 4.300017 12.86183 128.4394 4.428945
12 12.79128 133.3978 4.599924 12.93111 134.0236 4.621503
13 12.89667 117.9688 4.06789 13.00522 138.3031 4.769072
14 12.87578 119.3006 4.113814 12.86455 125.1847 4.316714
15 12.9339 123.0498 4.243097 12.81507 139.8334 4.821841
16 12.9282 128.7497 4.439645 12.84843 134.7138 4.645303
17 12.84452 135.5878 4.675441 12.95821 140.6227 4.849059
18 12.98611 130.0819 4.485583 12.9139 136.3271 4.700934
19 12.87325 129.7357 4.473645 12.86061 141.1341 4.866693
20 12.96661 131.3619 4.529721 12.96339 148.0451 5.105003
21 12.92065 131.6316 4.539021 12.83847 131.696 4.541241
22 12.95 118.5199 4.086893 12.88816 134.5525 4.639741
23 12.85471 127.7803 4.406217 12.94454 125.419 4.324793
24 12.92728 134.0905 4.62381 13.00921 137.0178 4.724752
25 12.90026 110.0911 3.796245 12.95532 129.1935 4.454948

a Structural data compiled from the final structures from each run for both the temperature annealing and pressure-temperature
annealing simulations.
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to the other, squared,45 and then averaged over time and the
number of polymer molecules in the sample. This gives a
good measure of whether the polymer is stretched (or coiled)
or compact. Again, this measurement depends directly on
the polymer in question and the physical conditions in which
it exists. For tetraglyme, a value of approximately 140 Å
has been reported. Finally, the characteristic ratio45 is an
important measurement, because it relates the radius of
gyration in a unitless form that is easier to compare between
oligomers of different lengths. Additionally, according to
theoretical calculations, the value has significance in deter-
mining the amount of flexibility the polymer has. For a freely
jointed polymer of infinite length, the characteristic ratio
should be 1. In the freely rotating chain model, the value
can be used to determine the bond angle.45 The characteristic
ratio is defined as

Cn ) R2

nl2

where n is the number of backbone bonds in the oligomer
and l is an average bond distance in the polymer system
(approximately 1.5 Å for the glymes, based on published
geometries in ref 33, for example). Cn for tetraglyme has
been reported to be 4.9.34,35 Tables 5 and 6 list the radii of
gyration, mean squared end-to-end distances, and charac-
teristic ratios for the oligomer simulations performed here.
All calculated values for the mean squared end-to-end
distances for tetraglyme are within 30% of the previously
reported ensemble average and values obtained using pres-
sure annealing are considerably closer, within 9%. In
addition, most calculated values of the characteristic ratio
are within a few tenths of an angstrom, with a maximum
deviation of -1.1 Å (22%) from the published, ensemble-
average value for temperature annealing and 13% (0.65 Å)
for pressure annealing. The radii of gyration are uniformly
lower than previously reported, and perhaps indicate a
difference due to temperature effects or the fact that these
values represent a single minimized structure, whereas the
published values are taken from an ensemble average at
300 K.

4.2.3. Torsional Triad Population. This measurement34-36

is specific to oligomers or polymers, as it can be defined
only for a given backbone atom sequence of three bonds.
Triad analysis for PEO requires measuring a series of three
torsion angles each time they occur, classifying the confor-
mations as trans (labeled t, encompassing angles from 120°
to 240°), gauche (labeled g, encompassing angles from 0°
to 120°), or gauche minus (labeled n, encompassing angles
from 240° to 360°). The triads are characterized by three
letters. The combination ttt, for example, indicates that all
three angles in the triad are trans. Finally, the number of
times each combination occurs is counted and used to
generate the figures described below. Figure 1 shows that
monoglyme contains only a single conformational triad
defined by torsional angles around bonds labeled 2-3, 3-4,
and 4-5. Tetraglyme, on the other hand, contains four triads
in each molecule. Figure 4 shows how the distribution of
triads changed between the random initial state and the final
state for the monoglyme simulation that produced the lowest

energy. Initially, the triad distribution was random, containing
a wide variety of triad combinations. After the optimization
was performed, only two types of triads predominated,
corresponding to low-energy states of each individual strand.
The tgt triad dominated, as expected because it is known to
represent the dominant triad in glyme systems.34-36 A similar
situation occurred in the tetraglyme simulation that yielded
the lowest energy, depicted in Figure 5. Again, the initial
state contained a variety of traid combinations, but after the
simulation was performed, more dominant triads emerged.
Two triads in particular, tgt and ttt, each became more
populated, which is consistent with previously reported
results.34-36 Also, states such as gtg that were only minimally
populated in previous works dropped in population consider-
ably.34-36

5. Conclusions

We have shown that pressure annealing (pressure-tempera-
ture annealing) can help to find low-energy structures of
systems complicated by steric hindrance. We hypothesize
that this is due to the effect that lowered density (due to the
lowered pressure) has on a bulky molecule’s ability to
rearrange itself. Pressure annealing was tested here by
allowing such conditions to be realized. Additionally, the
final compression phase helps to pack the well-folded
molecules onto each other. We showed that bulky molecules
gave a lower energy nearly 70% of the time (and as high as
80% in monoglyme) during pressure-temperature annealing
simulations when compared to conventional simulated an-
nealing. In contrast, for the simpler Lennard-Jones model,
pressure-temperature annealing performed better only 52%
of the time and thus gave no appreciable benefits. The
conventional simulated annealing simulations and the pres-
sure annealing simulations executed identical numbers of MD
and minimization steps and so took essentially equal amounts
of time to complete, which demonstrates a further advantage
for the pressure annealing simulations.

For the systems studied, the radial distribution functions,
radii of gyration, mean squared end-to-end distances, char-
acteristic ratios, and torsion triad populations generated by
the method compare well with published results. Pressure
annealing shows promise and should be further studied
through application to other systems. In particular, applica-
tions of the technique to studying the low-energy conforma-
tions of longer oligomers, peptides, and small proteins might
be pursued. This method, especially in simulations with
explicit solvent, would seem to be a very promising approach.

Finally, different heating and cooling schedules can have
a significant effect on the results of temperature annealing
studies, and an extensive literature exists discussing various
possible heating/cooling schedules. Although we selected one
particular cooling (and expansion/compression) schedule
simply to illustrate the utility of pressure annealing, many
others exist, and their effects should be investigated sys-
tematically in subsequent work. Another avenue that deserves
further exploration includes incorporating the ideas of this
work into the replica-exchange framework. Exchanging
replicas at different pressures as well as different tempera-
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tures could yield a robust optimization technique, particularly
in systems containing explicit solvent.
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Abstract: We present the results of quantum chemical calculations of the electronic properties
of the anionic form of the green fluorescent protein chromophore in the gas phase. The vertical
detachment energy of the chromophore is found to be 2.4-2.5 eV, which is below the strongly
absorbing ππ* state at 2.6 eV. The vertical excitation of the lowest triplet state is around 1.9 eV,
which is below the photodetachment continuum. Thus, the lowest bright singlet state is a
resonance state embedded in the photodetachment continuum, whereas the lowest triplet state
is a regular bound state. Based on our estimation of the vertical detachment energy, we attribute
a minor feature in the action spectrum as due to the photodetachment transition. The benchmark
results for the bright ππ* state demonstrated that the scaled opposite-spin method yields vertical
excitation within 0.1 eV (20 nm) from the experimental maximum at 2.59 eV (479 nm). We also
report estimations of the vertical excitation energy obtained with the equation-of-motion coupled
cluster with the singles and doubles method, a multireference perturbation theory corrected
approach MRMP2 as well as the time-dependent density functional theory with range-separated
functionals. Expanding the basis set with diffuse functions lowers the ππ* vertical excitation
energy by 0.1 eV at the same time revealing a continuum of “ionized” states, which embeds the
bright ππ* transition.

1. Introduction
Unique electronic properties of the green fluorescent protein
(GFP) whose natural function is to convert blue light to green
light have motivated a number of experimental and theoreti-
cal studies and have been exploited in numerous practical
applications.1-3 Due to their fundamental and practical
importance, studies of the structure and properties of
photoreceptor proteins and their denatured chromophores

constitute an important field of modern research. Moreover,
GFP can be considered as a model for other fluorogenic
unsymmetric methine dyes4-9 and is of interest to organic
photovoltaic materials. For example, the fluorescent protein
motif has already inspired the creation of new organic
phototovoltaic sensitizers10 and other optoelectronic materi-
als.11

From the theoretical perspective, characterization of the
electronic structure of isolated chromophores is the first step
toward understanding their photochemical and photobiologi-
cal properties in realistic environments. Modeling isolated
species involves calculating the molecular parameters of the
chromophores in the gas phase and in solution using quantum
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chemistry methods. This series of two papers focuses on
accurate calculations of the properties of biological chro-
mophores with ab initio methods using the model GFP
chromophore, 4′-hydroxybenzylidene-2,3-dimethylimidazoli-
none (HBDI) anion, as a benchmark system (Figure 1). In
this paper, we present the vertical excitation and electron
detachment energies and discuss the electronic properties of
the excited and detached states. In a subsequent paper,12 we
discuss the cis-trans isomerization of the HBDI anion in
the ground electronic state.

Earlier experimental studies have characterized the absorp-
tion of HBDI in the native protein environment.13 The
spectrum of the wild-type GFP has two broad absorption
bands at 396 nm (3.13 eV) and 476 nm (2.60 eV) assigned
to the neutral and anionic forms of the chromophore,
respectively. The spectra in aqueous solution14,15 reveal
strong pH sensitivity: the absorption maximum at neutral
pH is at 370 nm (3.35 eV), whereas at pH ) 13 and pH )
1, it is shifted to 426 nm (2.91 eV) and 396 nm (3.13 eV),
respectively. The absorption of denatured wild-type proteins
exhibits a similar pH-dependence.16 The shifts were at-
tributed to different protonation and deprotonation forms,
as well as a strong interaction with water. The latter is
consistent with a large change (about 7 D) of the dipole
moment upon excitation determined in the Stark effect
measurements taken in a buffered (pH ) 6.5) glycerol
solution at 77 K.17 Therefore, the protonation and deproto-
nation of HBDI and the solvent effects, which strongly affect
its electronic properties, needed to be accounted for in
theoretical models. However, it is important to characterize
the chromophore in the gas phase first in order to quantify
the solvent effect separately.

Recently, a gas-phase action spectrum of anionic HBDI
(as well as other protonated forms), using photodestruction
spectroscopy of mass-selected ions injected into an electro-
static ion storage ring, was reported providing an important
reference for theory.14,15 The spectrum shows an absorption
band centered at 2.59 eV (479 nm), which extends from
2.4-2.8 eV (440-520 nm) as well as a minor peak around
2.3 eV (540 nm). The authors emphasized a striking
similarity between the absorption bands in the gas phase and
the protein and suggested that the protein environment shields
the chromophore from water and that the absorption in the
protein is an intrinsic property of HBDI. While the role of
the protein still needs to be investigated, this measurement
facilitates more direct comparison between the gas-phase
calculations of vertical excitation energies and the experi-
mental absorption for benchmarking theoretical methods.

The large absorption band in the gas-phase spectrum of
the HBDI anion has been assigned as the ππ* transition,
however, the nature of the minor feature at 2.3 eV has not
been discussed.

A variety of electronic structure techniques ranging from
simple semiempirical approximations to high-level ab initio
methods have been applied to simulate the properties of the
cis-anionic form of HBDI.18-24 Selected representative
results are summarized in Table 1.

These studies have identified the absorbing state of the
HBDI anion as the S1 state derived from a HOMO-LUMO
excitation of the ππ* character. LUMO, however, is a
valence π*-like orbital only in relatively small basis sets;
including diffuse functions increases the number of molecular
orbitals between the HOMO and the lowest π*-like orbital.
Although the bright state retains its ππ* character, it is not,
strictly speaking, a HOMO-LUMO transition in a realistic
basis set.

The first theoretical studies on the chromophore, dating
back to the late 1990s,18,19 employed semiempirical methods
based on the neglect-of-differential overlap approximation.
They placed the ππ* state at 2.77 eV or 0.18 eV above the
experimental absorption maximum. Ab initio calculations
using configuration interaction with single excitations (CIS)
in a small basis set20 grossly overestimated the excitation
energy. These and other results from Table 1 reveal that
accurate calculations of the vertical excitation energy for the
bright ππ* transition are challenging for quantum chemistry.

Time-dependent density functional theory (TD-DFT), which
can be applied to very large systems, gave rise to high
expectations in the field of photochemistry. However, the
notorious self-interaction error25-27 results in an unphysical
description of charge-transfer (CT) states,28 which are common
in large molecules. In addition to artificially low excitation
energies of real CT states, spurious CT states appear, spoiling
the description of other states. The number of these false states
increases steeply with the system size.29 In the case of
fluorescent protein chromophores, TD-DFT has been reported
to perform quite modestly, as discussed in ref 23. In that study,
which examined various functionals, the best agreement with
the experiment was obtained for the BP86 functional.30,31 This
value, 2.94 eV (421 nm), which is listed in Table 1, is still
0.35 eV (60 nm) away from the experiment. Overall, TD-DFT
excitation energies range from 2.94 to 3.23 eV,23 the popular
B3LYP functional32,33 yields 3.05 eV.

CASPT2, the complete active space self-consistent field
(CASSCF) method with second-order perturbation theory
(PT2) correction,34 has been applied to model photochemical
properties of organic chromophores in various media.22,35-44

The CASPT2/6-31G(d) result22 from Table 1 agrees fairly
well with the experimental value; however, the CAS
distribution of 12 electrons over 11 orbitals is a truncation
of the entire π-orbital active space, which requires the
CASSCF(16/14) wave function for the GFP chromophore.
Bravaya et al.24 performed calculations of the vertical ππ*
transition energies for various forms of HBDI using a very
expensive and highly correlated approach, i.e., state-averaged
CASSCF(16/14) wave functions constructed in the full
π-orbital active space augmented by perturbative corrections:

Figure 1. Chemical structure and atomic labels of the anionic
form of the model GFP chromophore HBDI in the cis-
conformation.
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multireference second-order Møller-Plesset perturbation
theory (MRMP2)45 and an extended version of the multi-
configurational quasidegenerate perturbation theory (aug-
MCQDPT2)46-48 (using ground-state equilibrium geometries
optimized using DFT with the PBE0 functional49,50 and the
(aug)-cc-pVDZ basis set:51 aug-cc-pVDZ on oxygen atoms
and cc-pVDZ on all other atoms). The MRMP2 and aug-
MCQDPT2 results are within 0.12 and only 0.05 eV from
the experimental value, respectively (Table 1). These data
suggest that one can compute the positions of absorption
bands of biological chromophores with an accuracy of 10-20
nm (less than 0.1 eV) by applying perturbatively corrected
CASSCF-based approaches. These techniques, however, are
computationally demanding, and their execution requires
advanced skills and extreme care, as the application of the
method involves: (i) a careful selection of a large number of
active space orbitals in fairly large basis sets; (ii) converging
the state-averaged CASSCF solutions corresponding to the ππ*
transition, especially in realistic basis sets; and (iii) a careful
and often ambiguous treatment of perturbative corrections to
the reference CASSCF solutions. Moreover, gradient calcula-
tions are only available for bare CASSCF wave functions. Thus,
it is desirable to find a more robust approach of a comparable
accuracy for wider applications in modeling the properties of
biological chromophores.

Contrarily to the bright singlet ππ* state, little is known
about the triplet states of the GFP chromophore. The
fluorescence properties of GFP suggest that the intersystem
crossing is not efficient, at least in the chromophore in the
native protein environment. In the gas-phase photocycle,
however, triplet states can play an important role. For
example, possible population trapping in the triplet has been
suggested as an explanation for observed millisecond-long
lifetimes of the photoexcited ions in the ion storage ring
experiments.52 Spin-forbidden relaxation channels have also
been considered in the studies of GFP mutants.53,54

In this work we discuss the character of the bright ππ* state
of the HBDI anion and continue to benchmark different
perturbation theory corrected multiconfigurational approaches.
We also apply the equation-of-motion coupled-cluster method
with single and double excitations (EOM-CCSD)55-60 as well
as TD-DFT with the range-separated functionals, BNL61 and
ωPB97X.62 We also characterize the lowest ππ* triplet and

report the vertical electron detachment energy (VDE). Based
on the calculated VDE, we assign the minor feature as due to
the photodetachment transition. This has important implications
on the character of the bright state: the ππ* transition is a
resonance state embedded in the ionization continuum. The
triplet state, however, lies below VDE. As a resonance state,
the ππ* singlet has a finite lifetime and can undergo autoion-
ization due to coupling to the ionization continuum. Contrary
to that, the triplet may have a much longer lifetime. Thus,
population trapping in the triplet state in the gas-phase photo-
cycle seems to be required to explain millisecond kinetics of
the fragments yield in the ion storage ring experiments.52

Moreover, the resonance nature of the ππ* state in the anionic
GFP might be responsible for very different kinetics of the
photofragment yield of the anionic and protonated GFP.52

2. Computational Methods

The equilibrium geometries were optimized by DFT with
the PBE0 variant50 of the Perdew-Burke-Ernzerhof (PBE)
hybrid functional49 and by CASSCF(14/12). The cc-pVDZ
basis set51 was used in both calculations. After observing
noticeable differences in vertical excitation energies com-
puted using these two geometries, we reoptimized the
equilibrium structure using MP2 with cc-pVTZ,51 which
yields very accurate structures for well-behaved closed-shell
molecules.63 MP2 calculations employed the resolution-of-
the-identity (RI) technique. The CASSCF and PBE0 struc-
tures are C1, whereas the RI-MP2 optimization produced a
Cs minimum. The Cartesian coordinates of the optimized
structures are given in the Supporting Materials.

Vertical excitation energies were computed by MRMP2,
TD-DFT with the BNL and ωPB97X functionals, CIS, scaled
opposite-spin CIS with perturbative doubles (SOS-CIS(D)),
and EOM-CCSD for excitation energies (EOM-EE-CCSD).
The VDE was computed at the CASSCF geometry as the
energy of the Hartree-Fock HOMO (Koopmans’ theorem)
by EOM-CCSD for ionization potentials (EOM-IP-CCSD)
and by using the BNL HOMO energy (as described below,
this is equivalent to computing VDE as the difference
between the total BNL energies of the anion and the neutral
radical). The ωPB97X and B3LYP Koopmans’ theorem and
∆E values are also given for comparison.

Table 1. Selected Theoretical Estimates of the S0-S1 Vertical Excitation Energy (∆E) and the Corresponding Wavelengths
for the Gas-Phase GFP Chromophore

method to compute
excitation energy

method to optimize
ground-state geometry ∆E (eV) wavelength (nm) ref

INDO-CI PM3 2.77 448 ref 18a

CIS/6-31G(d) RHF/6-31G(d) 4.37 284 ref 20
TD-DFT(BP86)/6-31++G(d,p) B3LYP/6-31++G(d,p) 2.94 421 ref 23b

CASPT2/6-31G(d) CASSCF(12/11)/6-31G(d) 2.67 465 ref 22
SAC-CI/DZV B3LYP/6-31G(d) 2.22 558 ref 21
MRMP2 based on SA-CASSCF

(16/14)/(aug)-cc-pVDZ
PBE0/aug-cc-pVDZ 2.47 501 ref 24

aug-MCQDPT2 based on SA-
CASSCF(16/14)/(aug)-cc-pVDZ

PBE0/aug-cc-pVDZ 2.54 489 ref 24

experiment 2.59 479 ref 14, 15

a A close value (444 nm) was obtained in the later semiempirical calculations of the NDDO type (ref 19). b For an overview of previous
TD-DFT calculations using different functionals and basis sets, see Table 1 of ref 23; only the value closest to the experimental excitation
energy is presented here.
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Each method is outlined below, and computational details
are given in the Results Section. MRMP2 calculations were
carried out with the PC GAMESS version64 of the GAMES-
S(US) quantum chemistry package.65 CIS, SOS-MP2, SOS-
CIS(D), EOM-CCSD, and BNL calculations were performed
with Q-Chem.66

2.1. Multireference Møller-Plesset Perturbation Theory
(MRMP2). The MRMP2 model45 is a special single-state
case of multiconfigurational quasidegenerate second-order
perturbation theory (MCQDPT2)46 implemented in GAMES-
S(US)65 and PC GAMESS.64 The zeroth-order (reference)
wave functions are state-averaged CASSCF wave functions
(ΨR

CAS) for the target state R. The unperturbed Hamiltonian
operator is a sum of one electron Fock-like operators in
which the occupation numbers are replaced by the diagonal
elements of the CASSCF density matrix. Beyond zeroth-
order multiconfigurational functions, the complementary
eigenfunctions of the complete active space configuration
interaction Hamiltonian as well as the wave functions
generated by one- and two-electron excitations from the
reference functions (S-space), are considered via the pertur-
bation theory. The second-order corrections to the energy
are given by

where functions Φj belong to the S-space of uncontracted
determinants. In a similar approach, CASPT2,34 the S-space
consists of the contracted configurations. Both MRMP2 and
CASPT2, diagonalize-then-perturb methods, are widely used
to calculate the excitation energies of organic chromophores.
A comprehensive benchmark study67 reports excellent agree-
ment between zeroth-order-corrected CASPT268 and an
accurate approximation to the coupled-cluster with singles,
doubles, and triples method (CC3).69,70 Similar accuracy is
observed in the recent computational studies employing the
MRMP2 methodology.46-48

2.2. Scaled Opposite-Spin MP2 and Scaled Opposite-
Spin CIS(D). Spin-component-scaled MP2 (SCS-MP2) is a
semiempirical approach based on scaling different spin
contributions to the MP2 correction as proposed by Grimme:71

The parallel-spin component Ess
(2) and the antiparallel-spin

component Eos
(2) are scaled to correct for their unbalanced

contributions to the MP2 correlation energy. Empirically
found optimal values of the coefficients are pss ) 1/3 and
pos ) 6/5. SCS-MP2 provides an improved description for
many systems in which the ground state has a single
reference character.

As the opposite-spin contribution is the major one, Jung
et al.72 further simplified the model by dropping the same-
spin term altogether and scaling the opposite-spin contribu-
tion up. Along with the RI technique, SOS-MP2 offers a
significant improvement in computational performance com-
pared to the original MP2. The scaling coefficient - the only
empirical parameters in the method - can be optimized for
a wide variety of systems.73

In the same manner as SOS-MP2 is introduced for
correcting the ground-state energy, SOS-CIS(D) is designed
for excitation energies.74 The computational scaling of SOS-
CIS(D) is only O(N4), which is a significant improvement
over the O(N5) scaling of CIS(D). The accuracy of SOS-
CIS(D) is very similar to that of CIS(D) for valence states,
whereas the performance for the Rydberg states is improved.
Based on a set of over 40 various excited states in over 20
organic molecules, the mean signed error in the SOS-CIS(D)
vertical excitation energy is 0.02 eV for valence states and
-0.08 eV for Rydberg transitions. Limitations of SOS-MP2
and SOS-CIS(D) are the same as MP2 and CIS(D), respec-
tively. For example, these methods fail when the ground-
state wave function acquires a significant multiconfigurational
character, as at a cis-trans isomerization transition state, and
for excited states with doubly excited character. Open-shell
(e.g., doublet) states can also cause difficulties due to spin
contamination.

2.3. Long-Range-Corrected Density Functionals. In
long-range-corrected functionals, a range-separated repre-
sentation of the Coulomb operator75,76 is used to mitigate
the effects of the self-interaction error. The contribution from
the short-range part is described by a local functional,
whereas the long-range part is described using the exact
Hartree-Fock exchange. The separation depends on a
parameter γ. In the BNL approach,61 γ is optimized for each
system using Koopmans-like arguments: γ is adjusted such
that the HOMO energy equals the difference between the
total BNL energies of the N1 and N-electron systems. Initial
benchmarks61,77 demonstrated an encouraging performance
for excited states and even such challenging systems as
ionized dimers. In ωPB97X,62 γ and other parameters are
optimized using standard training sets. Benchmark results
have demonstrated consistently improved performance rela-
tive to uncorrected functionals.

2.4. Equation-of-Motion Coupled-Cluster Methods
for Excitation Energies and Ionization Potentials. In
EOM-CC,55-60,78-80 the Hamiltonian is similarity transformed:

using the cluster operator T obtained from coupled-cluster
equations for the ground state:

where |Φµ〉 denotes all µ-tuply excited determinants with
respect to the Hartree-Fock reference |Φ0〉. The solution for
the m-th excited state is found from

where Rm is a linear excitation operator, the form of which
depends on the target states. For example, in equation-of-
motion for excitation energies (EOM-EE) Rm is

whereas for ionized states, Rm is not particle conserving
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The EOM wave function of the m-th state is given by

In EOM-CCSD, the excitation operator Rm is truncated after
the two-body term (i.e., two-hole two-particle for EE and
two-hole one-particle for IP), and the similarity transformed
Hamiltonian is diagonalized in the basis of all singly and
doubly excited determinants.

The EOM-CCSD error bars are 0.1-0.3 eV for electronic
states dominated by a single excitation. Including triples
reduces the error to 0.01-0.02 eV.81 In a recent benchmark
study, Schreiber et al.67 reported EOM-CCSD mean absolute
and maximum errors of 0.12 and 0.23 eV, respectively. A
recent study of uracil82 demonstrated that even for well-
behaved molecules inclusion of triple excitations and extend-
ing the basis set beyond augmented double-� can affect
vertical excitations by as much as 0.3 eV.

3. Results and Discussion

3.1. Molecular Orbital Framework. Figure 2 shows two
resonance structures of the HBDI anion. The interaction
between these two structures results in charge delocalization
between the two oxygen atoms and in scrambling CC bond
orders, as discussed for example in ref 42. Changes in bond
orders in the bridge region due to the resonance are believed
to be important in thermal isomerization,83 as discussed in
detail in the companion paper.12

The natural bond orbital (NBO)84,85 charges on the
phenoxy or imidazolin oxygens (computed using the RI-MP2
densities) are -0.65 and -0.66, respectively. The almost
equal values of the charges suggest significant contributions
from both resonance structures. As the result of the resonance
interaction, the C1P-C1B bond gains double-bond character,
whereas the order of C1B-C1I bond is reduced, and the bridge
moiety acquires allylic character. It is interesting to compare
the respective bond lengths with the values for the double
and single CC bonds between sp2 hybridized carbons, e.g.,
in a planar and twisted ethylene (see ref 86 for explanation
regarding the choice of the reference structures). Our best
estimates of the C1P-C1B and C1B-C1I bond lengths (RI-
MP2/cc-pVTZ) are 1.394 and 1.378 Å, respectively. The
lengths of the CC bond in ethylene is 1.333 Å at the planar
geometry (where the formal bond order is 2) and 1.470 Å87

at the twisted configuration, where the π bond is completely
broken.86 Thus, assuming a linear relationship between the
bond order and bond length, one can assign 55 and 67% of
a double-bond character to the C1P-C1B and C1B-C1I bonds,
respectively. The NBO analysis84,85 assigns 1.8 electrons to
a slightly asymmetric allylic three-center bond. The relative
contributions of the C1P and C1I carbons are 38 and 62%,
respectively, in a semiquantitative agreement with the bond
orders derived from the bond lengths.

The resonance interaction is also reflected by the shape of
MOs. Figure 3 shows two Hartree-Fock orbitals involved in
the bright ππ* and the photodetachment transitions (HOMO

and valence LUMO). These orbitals, which are traditionally
referred to as π and π*, have quite complicated shapes and are
delocalized over the entire molecule. Their character in the
bridge region can be explained by considering two interacting
π orbitals, as shown in Figure 3. The HOMO can be described
as an out-of-phase combination of two localized π bonds,
whereas the large electron density on C1B in the LUMO can be
derived from the in-phase combination. Of course, due to the
delocalized character of the orbitals, this picture is just an
approximation, but it allows one to see the origin of the large
oscillator strengths and changes in charge distribution in the
excited state and also provides a useful framework for explain-
ing the character of the transition state along the cis-trans
isomerization coordinate.12

3.2. Vertical Electron Detachment Energy of the
HDBI Anion. Since the HBDI anion is a closed-shell system,
it is stable in the gas phase and has a relatively large VDE.
However, as shown below, it does not support bound
electronically excited singlet states, and the lowest valence
excitation is embedded in an ionization continuum. Such
resonance states are very common in molecular anions88 and
play an important role in dissociative electron attachment
processes.89,90 Thus, the broad character of the experimental
action spectrum14,15 is at least partially due to the broadening
of the resonance-like ππ* state by its interaction with the
ionization continuum. Finite lifetime and autoionization

Rm ) ∑
i

rm,ii +
1
4 ∑

ija

rm,ij
a a†ji + ... (7)

|Ψm〉 ) Rm exp(T)|Φ0〉 (8)
Figure 2. Two resonance structures of the HBDI anion.

Figure 3. Two molecular orbitals of the HBDI anion giving
rise to the ππ* state. The character of the orbitals can be
explained by considering the linear combination of two
localized π-bonding orbitals.
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decay of this state should be taken into account when
considering photoinduced dynamics and lifetime of the HBDI
anion in the gas phase. In the condensed phase, solvent may
stabilize the anion such that its excited states become bound.
However, one photon photodetachment channel may still be
relevant for the anionic forms, especially when the production
of solvated electrons is considered.91 The resonance character
of the ππ* state also has significant consequences in the
electronic structure calculations59,88 of excited states, as
described below.

The simplest estimate of VDE obtained by applying
Koopmans’ theorem is 2.56-2.93 eV depending on the basis
set, the largest value obtained with the 6-311(2+,+)G(2df,2pd)
basis. The EOM method for ionization energies (EOM-IP),
which includes electronic correlation, can provide more
reliable estimates of VDE. However, due to the size of the
system, we are limited to relatively modest basis sets. In the
6-31G* basis, Koopmans’ VDE is 2.56 eV, while EOM-IP-
CCSD yields 2.05 eV. The larger 6-31+G* basis increases
the energies to 2.91 and 2.48 eV, respectively. Thus,
including correlation reduces VDE by 0.4-0.5 eV and
assuming the effect is consistent throughout basis sets, we
estimate that the target EOM-IP-CCSD/6-311(2+,+)-
G(2df,2pd) energy is 2.4-2.5 eV.

B3LYP/cc-pVDZ energy difference calculations yield 2.46
eV, which is considerably larger than the respective Koop-
mans value of 0.92 eV. The ωPB97X/cc-pVDZ energy
difference value is 2.39 eV, whereas the respective Koop-
mans IE is much higher (2.83 eV).

By construction, the BNL energy difference VDE is equal
to the respective HOMO energy. Recent benchmarks92

demonstrated that BNL produces very accurate ionization
energies. VDE calculated with BNL in the small cc-pVDZ
basis is 1.99 eV (γ ) 0.250), and it increases to 2.52 eV in
the 6-311G(2+,+)G(d,p) basis for which γ ) 0.228. Ad-
ditional sets of diffuse orbitals or more extensive polarization
do not affect this value, e.g., VDE calculated with BNL/6-
311G(3+,2+)G(2df,2pd) is 2.53 eV.

The discrepancies between the Koopmans and ∆E values
have important implications for the excited-state calculations,
as the former value defines the onset of the ionization
continuum in CIS/TD-DFT calculations (see Appendix).
Thus, with B3LYP, the continuum begins 1.54 eV below its
own VDE, whereas the situation with ωPB97X is reverse,
i.e., the continuum states appear 0.44 eV above the respective
VDE. BNL, by constriction, is internally consistent, and the
continuum states in TD-DFT calculations appear exactly at
the respective VDE.

Thus, our estimate of VDE is 2.4-2.5 eV, within 0.1 eV
from the maximum of the weak absorption feature at 2.3 eV.
The remaining discrepancy between the two values might be
due to the uncertainties in equilibrium geometries or possible
vibrational excitation of the molecules in the experiment.

Although correlation has significant effect on VDE, the
ionized state has Koopmans-like character, i.e., the leading
EOM-IP amplitude corresponds to ionization from the
HOMO (see Figure 3) and equals 0.96. Thus, the Hartree-
Fock HOMO is a good approximation to a correlated Dyson
orbital.93

3.3. Vertical Excitation Energy and Electronic Proper-
ties of the Singlet and Triplet ππ* Transitions of the
HBDI Anion. 3.3.1. Singlet ππ* State: Benchmark
Results. Motivated by the discrepancies in previous theoreti-
cal estimates of the ππ* excitation energy of the HBDI anion
(Table 1), we set out to benchmark other electronic structure
methods with the purpose of identifying a rigorous, yet fairly
inexpensive, quantum chemistry approach that can be
employed in condensed-phase applications. The experimental
maximum of absorption is at 2.59 eV (479 nm), and the
band’s full width at half-maximum (fwhm) is 0.25 eV (45
nm).14,15 Assuming that the absorption maximum corre-
sponds to the vertical transition of the lowest-energy isomer
(which is not entirely clear, as the temperature of the ions
in the ring is unknown), one would like the computed
wavelength to fall within 2.47-2.72 eV (456-502 nm).
However, due to the resonance nature of the ππ* state,
calculating the excitation energies and oscillator strengths,
as well as comparing them with the experimental spectrum,
are not as straightforward as in the case of the excited states
lying below the electron detachment energy. In the following,
we will use the term “detached states” to identify the
electronic states that compose the continuum instead of the
usual “ionized states” as the initial species is anionic.

The ground-state equilibrium geometry was optimized with
PBE0/cc-pVDZ, CASSCF/cc-pVDZ, and RI-MP2/cc-pVTZ
(see Computational Methods section). Although the differ-
ences between the geometries are small (maximum bond
length deviation is 0.03 Å and angles agree within 2 degrees),
the ππ* excitation energy computed using wave function-
based methods differs by about 0.1 eV. This effect of
geometry is consistent with previous calculations by Olsen94

for a similar system (p-hydroxybenzylidene-imidazolin-5-
one, HBI). Of the three structures, the RI-MP2/cc-pVTZ is
the most accurate.63 Since most of the changes in electron
density occur in the bridge region, it is interesting to compare
the C1P-C1B and C1B-C1I bond lengths computed by
different methods. The RI-MP2 values are 1.394 and
1.378 Å, which is very close to the PBE0 values of 1.404
and 1.385 Å. Due to the absence of dynamical correlation,
CASSCF exaggerates the bond alternation giving 1.406 and
1.397 Å.

Calculations in small basis sets create discrete states from
the continuum and artificially exclude the detached states
from the picture. Assuming that the character of the
resonance state of interest is well described, such calculations
may provide a fairly good estimate of the position of this
state in the continuum, however, it is difficult to predict how
expanding the basis set will affect the resonance state.59,88

Moreover, one should anticipate broadening of the resonance
state due to the interaction with the detached states. Increas-
ing the size of the one-electron basis brings the continuum
states down. When the basis set is large enough to accom-
modate a detached electron, the lowest excited state will
correspond to the detached state (this fact has been exploited
in pilot implementations of EOM-IP-CCSD based on the
EOM-EE-CCSD code by adding a very diffuse orbital to
the basis to describe the ionized electron).95,96 It can be
shown formally (see Appendix) that, in the case of CIS and
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TD-DFT, the energy of the lowest of such CIS-IP states
equals the HOMO energy, that is, the Koopmans theorem
can be proven by considering the configuration interaction
of all singly detached determinants.

When the one-electron basis set is expanded with diffuse
functions, the density of states rapidly increases with both
CIS and TD-DFT (BNL), as illustrated in Figure 4. At the
same time, the lowest excited state converges to Koopmans’
VDE. Both methods split the oscillator strength of the bright
ππ* transition among multiple states, but BNL does that to
a larger degree, which results in three to four states with
close oscillator strengths (Table 2). That may be due to the
remaining self-interaction error in BNL calculations.

Seemingly in contradiction with the proof given in the
Appendix, the lowest excited CIS and TD-DFT states shown
in Figure 2 fall below the Koopmans estimate in large basis
sets due to additional stabilization by the interaction with
other CIS determinants that vanish once the detached electron
is infinitely far from the core. Indeed, if a separate large
noninteracting orbital is used instead of diffuse functions,
the lowest excitation energy in such a system is exactly equal
to the HOMO energy.

As the density of low-lying states that approximate the
continuum increases and the oscillator strength gets redis-
tributed, it becomes increasingly more difficult to compute
or even identify the resonance state. By following the
evolution of the states with the basis set increase, the limiting
value of the resonance state can be extrapolated using the
stabilization method by Taylor,97 as has been done in the
calculations of resonance electron attached states.59,88 From
the data in Table 2, we can estimate that the excitation energy
converges to 3.8 eV with CIS and to 3.3 eV with TD-DFT/
BNL. Overall, adding sets of diffuse functions results in
lowering the excitation energy of the bright state by 0.1 eV.

The CIS and TD-DFT/BNL calculations demonstrate that
the resonance state is embedded in an electron detached
continuum, and the broad character of the experimental
spectrum can be due to the interaction with the continuum.
Thus, small basis set calculations of the vertical excitations
energies of the ππ* state can only provide a rough estimate
of the position of the absorption maximum.

Introducing a noniterative doubles correction via SOS-
CIS(D) significantly lowers the energy of the ππ* transition,
while the detached state energies are affected less. We could
not obtain SOS-CIS(D) results in heavily augmented basis
sets due to the lack of the corresponding auxiliary bases for
the RI procedure, which becomes unstable upon adding a
second set of the diffuse functions. The magnitude of
correction is 0.9-1.2 eV for the ππ* state and 0.1-0.3 eV
for the detached states. MRMP2 based on sa-CASSCF(14/
12) in the modest cc-pVDZ basis yields 2.51-2.61 eV for
the ππ* excitation energy. SOS-CIS(D)/cc-pVDZ gives
2.71-2.81 eV, which is consistent with the more rigorous
MRMP2 estimates.

Figure 4. Effect of increasing the number of diffuse functions
in the basis set on the density of states and the convergence
of the lowest excited and the bright ππ* state. The calculations
were performed with CIS (top) and TD-DFT/BNL (bottom). The
basis set was varied from 6-311G(2pd,2df) to 6-311-
(4+,2+)G(2pd,2df).

Table 2. Interaction of the Bright ππ* State with the
Electron Detached Continuum as Reflected by the
Diminishing Oscillator Strength (fL) in CIS and TD-DFT/
BNL Calculationsa

basis set number energy, eV fL

CIS
6-311G(2df,2pd) 1 3.92 1.58
6-311(+,+)G(2df,2pd) 2 3.81 1.50
6-311(2+,+)G(2df,2pd) 6 3.66 0.22

9 3.74 0.14
10 3.85 1.14

6-311(2+,2+)G(2df,2pd) 9 3.60 0.08
12 3.82 1.35
17 4.02 0.06

6-311(3+,2+)G(2df,2pd) 37 3.73 0.43
40 3.84 1.00

TD-DFT (BNL)
6-311G(2df,2pd) 2 3.44 1.47
6-311(+,+)G(2df,2pd) 3 3.27 1.38
6-311(2+,+)G(2df,2pd) 7 3.18 0.54

9 3.24 0.31
10 3.38 0.52

6-311(2+,2+)G(2df,2pd) 8 3.12 0.15
9 3.15 0.15

12 3.29 0.39
13 3.29 0.63

6-311(3+,2+)G(2df,2pd) 35 3.23 0.47
37 3.24 0.39
39 3.37 0.15
40 3.37 0.15

a Also see Fig 4.
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At the CASSCF optimized geometry, EOM-CCSD/6-31G*
yields an excitation energy of 3.16 eV and an oscillator
strength fL ) 1.27. Including only one set of diffuse functions
lowers the energy to 3.04 eV (fL ) 1.25). The change in the
oscillator strength is consistent with the observed drop of
the EOM amplitude corresponding to the ππ* transition from
0.85 to 0.74. Benchmarks on the electronically excited states
of closed-shell molecules have shown that the combined
effect of increasing the basis set in EOM-CCSD calculations
and the triples correction can be as large as 0.3-0.4 eV.

The computational cost of MRMP2 and EOM-CCSD does
not allow us to use these methods to fully explore the basis
set effect on the ππ* excitation energy, e.g., via stabilization
method. We anticipate a noticeable effect of improving the
basis set on the energy of the ππ* state. For example, with
SOS-CIS(D), the excitation energy with the cc-pVTZ basis
is lower by 0.13 eV relative to cc-pVDZ. The EOM-CCSD
excitation energy also drops by as much as 0.2 eV upon
expanding the basis set from 6-31G* to 6-31+G*. The
oscillator strength calculated with CIS is about 10% lower
when basis sets with diffuse functions are used compared to
those without, demonstrating the beginning of the interactions
with the continuum.

The ππ* excitation energy obtained with MRMP2 based
on state-averaged CASSCF(16/14), which spans the entire
π-electron active space (Table 1), and a more compact (14/
12) active space (Table 3) agree equally well with the
experimental result: 2.47 eV (501 nm) and 2.52-2.61 eV
(476-491 nm), respectively, versus 2.59 eV (479 nm). The
most expensive aug-MCQDPT2/CASSCF(16/14) approach
(Table 1) does not perform noticeably different than MRMP2/
CASSCF(14/12). Therefore, one can rely on the fairly
practical MRMP2 approach based on a reduced active space
in the CASSCF wave function. Overall, the effect of
contracting the active space is less than 0.1 eV, which is
smaller than the uncertainty due to the equilibrium geometry

and anticipated effects of extending the basis set beyond the
double-� level.

In view of complexities associated with performing
multireference perturbation theory and underlying CASSCF
calculations, we find the results of the inexpensive SOS-
CIS(D) method very encouraging: at the PBE0-optimized
geometry, the SOS-CIS(D)/cc-pVTZ ππ* excitation energy
of 2.58 eV is within 0.01 eV from the experimental
absorption maximum and agrees very well with MRMP2
calculations.

The EOM-CCSD/6-31+G* excitation energy is 0.38 eV
above the experimental maximum, which is outside the
EOM-CCSD error bars. Analysis of the EOM amplitudes
confirms a singly excited character of the ππ* state, thus,
with an adequate basis set, EOM-CCSD error should not
exceed 0.3 eV. In addition to anticipated basis set effects
and interactions with the continuum states, other factors, such
as discrepancies due to equilibrium geometry as well as the
uncertainty in the experimental value (fwhm of the experi-
mental absorption is 0.25 eV), make it difficult to arrive at
a definite conclusion. More extensive calculations using
larger basis sets (and ideally using stabilization graphs) and
estimates of triples corrections (to account for dynamical
correlation) are required to assess the performance of EOM-
CCSD for this molecule. Basis set and triples effects alone
have been shown to account for as much as 0.3 eV in
excitation energies of ππ* character.82

Finally, we present TD-DFT results computed with the
range-separated functionals. Using the BNL functional61

with the small cc-pVDZ basis set, the ππ* state appears
the second lowest, which is consistent with the respective
VDE. At the CASSCF geometry, its excitation energy is
3.50 eV, and the oscillator strength is fL ) 1.51. The
6-311(+,+)G(2df,2pd) basis lowers the excitation energy
to 3.27 eV, and the oscillator strength to 1.38. ωPB97X62

gives similar values for the excitation energy and the

Table 3. Vertical ππ* Electronic Excitation Energies (∆E, in eV), Corresponding Wavelengths (nm), and Oscillator Strength
(fL) for the Gas-Phase GFP Chromophore (Figure 1)d

Ground-state geometry optimized with

PBE0/cc-pVDZ CASSCF(14/12)/cc-pVDZ RI-MP2/cc-pVTZ

Method ∆E fL nm ∆E fL nm ∆E fL nm

MRMP2 based on
sa-CASSCF(14/12)/
cc-pVDZ

2.52b - 491b 2.61c - 476c - - -

EOM-CCSD/
6-31G(d)

3.08 1.26 402 3.16 1.27 392 3.12 1.27 398

EOM-CCSD/
6-31+G(d)

2.97 1.24 418 3.04 1.25 408 3.00 1.25 413

SOS-CIS(D)/
cc-pVDZ

2.71 1.59a 457 2.81 1.61a 441 2.75 1.60a 451

SOS-CIS(D)/
aug-cc-pVDZ

2.57 1.45a 482 2.67 1.45a 464 2.61 1.45a 475

SOS-CIS(D)/cc-pVTZ 2.58 1.54a 480 2.68 1.56a 463 2.62 1.54a 473
SOS-CIS(D)/

aug-cc-pVTZ
2.58 1.37a 480 2.90 1.04a 427 2.72 1.23a 456

TD-DFT/BNL/
cc-pVDZ

3.44 1.51 360 3.50 1.51 354 3.59 1.55 346

TD-DFT/BNL/
6-311(+,+)G(2df,2pd)

3.22 1.38 385 3.27 1.38 379 3.24 1.38 383

TD-DFT/ωPB97x/
cc-pVDZ

3.52 1.52 352 3.59 1.53 346 3.55 1.53 349

TD-DFT/ωPB97x/
6-311(+,+)G(2df,2pd)

3.38 1.45 367 3.44 1.46 360 3.40 1.45 364

a Oscillator strength calculated with CIS. b At the equilibrium geometry computed with PBE0/(aug)-cc-pVDZ (diffuse functions only on
oxygen atoms). c At the equilibrium geometry computed with CASSCF(12/11)/(aug)-cc-pVDZ (diffuse functions only on oxygen atoms). d The
reference experimental value is 2.59 eV (479 nm) (ref 14, 15).
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oscillator strengths, i.e., 3.59 (fL ) 1.51) and 3.44 eV (fL

) 1.46) with cc-pVDZ and 6-311(+,+)G(2df,2pd), re-
spectively. Because the Koopmans continuum with ωPB97X
begins at higher energies (see Section 3.2, Vertical
Electron Detachment Energy of the HDBI Anion), the
detached states do not appear below the excited states in
these calculations.

Overall, it is unrealistic to expect accuracy better than 0.1
eV (20 nm) from computational protocols applicable to a
molecule of this size even for nonresonance states, and the
observed discrepancies between different methods confirm
that. Moreover, when assessing the accuracy of computed
values, one should keep in mind the finite width of the
experimental absorption band. Thus, more calculations are
necessary to provide a converged theoretical estimate,
especially stabilization analysis. For practical applications,
however, it is important that all the reliable theoretical
methods agree with each other in that the origin of the
intensity in the resonance state is due to ππ* excitation. SOS-
CIS(D) offers an inexpensive alternative to more rigorous
multireference methods if single excitations are dominant
in the wave function.

3.3.2. Changes in Electronic Density in the Singlet
ππ* State. As one may expect from the molecular orbital
character (Figure 3) and the large oscillator strength,
electronic excitation results in a significant redistribution of
electronic density. A convenient measure of charge distribu-
tion is the permanent dipole moment. Although in a charged
system it is origin dependent, the difference between the two
dipole moments, ∆µ ) µgr - µex, is not. At the CIS level of
theory, the value of |∆µ| is 0.6 D, and its direction is in the
molecular plain pointing toward the bridge carbon. This value
can be compared with the experimentally measured ∆µ,
derived from Stark effect measurements in a buffered (pH
) 6.5) glycerol solution at 77 K.17 This work also reports
the angle between ∆µ and ∆µtr. Strikingly, the experimental
value is 10 times larger than the computed one. Since ∆µ is
related to the changes in orbital occupations upon excitation,
it is dominated by contributions from the leading excitation
amplitudes and should be reproduced fairly accurately at the
CIS level. Thus, large discrepancy is likely to be due to the
solvent effect. Indeed, polar solvents result in the increased
dipole moment of the solute. For example, the dipole moment
of water in bulk water is about 30% larger than in the gas
phase. More polar charge distribution in the ground state in
solvent is clearly seen from the respective NBO charges (see
Table 2 in ref 12). Thus, for the difference of dipole moments
of two states, one may anticipate an enhanced effect.

3.3.3. Triplet ππ* State. The vertical excitation energies
of the lowest triplet state at the RI-MP2/cc-pVTZ geometry
are summarized in Table 4. The analysis of the wave function
confirms that the triplet is derived from the transitions

between the same orbitals as the singlet (Figure 3). As
expected, all methods consistently place the triplet consider-
ably below the singlet. The variations between the methods
are smaller for the triplet state. Our best value (SOS-CIS(D)/
cc-pVTZ) is 1.86 eV. The 0.76 eV gap between the singlet
and triplet does not suggest efficient intersystem crossing at
this geometry. The triplet state is 0.3-0.4 eV below VDE
and is, therefore, a bound electronic state. Thus, much longer
lifetime is expected for this state (as compared to the singlet),
not only because the radiationless relaxation to the ground
state is a spin-forbidden process, but also because the
autoionization channel is absent.

4. Conclusions

In this work we exploit modern quantum chemical methods
for calculations of the electronic properties of the GFP
chromophore and compare the results to the gas-phase
absorption spectrum obtained by photodestruction spectros-
copy in the ion storage ring.14,15,52

The experimental action spectrum of the denatured gas-
phase anionic GFP chromophore features a broad line
(2.4-2.8 eV) with a maximum at 2.59 eV and a minor
feature at 2.3 eV. Wave function-based and DFT calculations
estimate a VDE of 2.4-2.5 eV. Thus, we assign the minor
peak as due to the photodetachment transition. Based on our
estimate of VDE, the absorption band at 2.6 eV corresponds
to the transition to the resonance state embedded in an
electron detached continuum, and the broad character of the
spectrum is at least partially due to the interaction with the
continuum states.

The resonance nature of the ππ* state suggests a finite
lifetime, and that autoionization channel should be considered
when modeling the anionic GFP photocycle. The triplet state
is found to be well below the photodetachment threshold
(vertical excitation energy 1.86 eV). Thus, the two states
are expected to have very different lifetimes, which makes
the suggested52 population trapping in the triplet state even
more essential for explaining slow fragmentation kinetics.
The resonance nature of the ππ* state in the anionic GFP
might be responsible for very different behavior of the
photofragment yield of the anionic and protonated GFP,52

however, more detailed electronic structure calculations are
required in order to suggest a viable mechanism. An
important question is how photoinduced isomerization and
other structural changes42,98 affect the relative-states energies.

All wave function-based and TD-DFT methods agree on
the nature of the transition lending the intensity to the
resonancestate,whichisabrightππ*transition(HOMO-LUMO
in a small basis set), however, quantitative agreement is more
difficult to achieve. Most importantly, small basis set
calculations discretize the ionization continuum, and the
results of such calculations provide only a crude estimate of
the energy of the resonance state. In order to account for
basis set effects, the stabilization analysis can be used;
however, in view of the large size of the GFP chromophore
molecule, we were able to only conduct it with the CIS and
BNL methods.

Nevertheless, it is instructive to compare vertical excitation
energies of the ππ* state computed with different methods

Table 4. Vertical Triplet ππ* Electronic Excitation Energies
(∆E, in eV) of the HBDI Anion in the Gas Phase

basis set CIS SOS-CIS(D)

cc-pVDZ 2.03 1.91
aug-cc-pVDZ 2.02 1.88
cc-pVTZ 2.03 1.86
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in a moderate basis set and with the experimental band
maximum. While the CIS/aug-cc-pVTZ excitation energy is
more than 1 eV off, perturbative inclusion of double
excitations by SOS-CIS(D) yields a value which is within
0.1 eV from the experimental band maximum. The EOM-
CCSD values computed in the modest 6-31+G* basis are
within 0.38 eV from the experimental absorption maximum.
An analysis of the EOM-CCSD wave function confirms the
dominant one electron character of the ππ* state, however,
perturbative inclusion of triple excitations and a larger basis
set are required for a converged (with respect to the level of
theory) EOM-CC value. Based on previous studies, a proper
account of dynamical correlation by including triple excita-
tions and increasing basis set can change the vertical
excitation energy by as much as 0.3 eV. Basis set effects
evaluated using inexpensive SOS-CIS(D) calculations affect
vertical excitation energies by 0.14 eV upon the transition
from cc-pVDZ to aug-cc-VTZ.

Additional uncertainties arise from the ground-state ge-
ometry. For example, different choices of the ground-state
geometry (optimized with CASSCF, DFT, and MP2) intro-
duce an uncertainty of 0.1 eV in the vertical excitation
energies. A relatively strong dependence of the excitation
energy on the structure suggests additional broadening of
the absorption band due to vibrational excitations of the
chromophore.

The best MRMP2 estimate is within 0.07 eV from the
experimental band maximum, however, the inclusion of basis
set effects (using the SOS-CIS(D)/aug-cc-pVTZ estimate)
increases the difference to 0.21 eV. Overall, the observed
variations demonstrate that it is unrealistic to expect an
accuracy better than 0.1 eV from computational protocols
applicable to a molecule of this size even for nonresonance
excited states.

BNL/cc-pVDZ vertical excitation energy of the bright ππ*
transition is above MRMP2/cc-pVDZ value by 0.9 eV. Since
the self-interaction error is considerably reduced in BNL,
the photodetachment continuum is likely not contaminated
by spurious low-lying charge-transfer states ubiquitous in
TD-DFT calculations.
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Appendix

The electronic Hamiltonian in the second quantization form
is

where h is the core Hamiltonian operator, 〈pq|rs〉 denotes
two electron integrals, and the sums run over all the MOs.

The choice of the reference determinant |Φ0〉 defines the
separation of the orbital space into the occupied and virtual
subspaces. Let {i,j,...} be the subspace of all occupied and
{a,b,...} be the subspace of all virtual orbitals in |Φ0〉. Indexes
p,q,... denote all orbitals, occupied or virtual.

Let |Φ0〉 be the solution to the Hartree-Fock equations
with an energy value:

|Φn〉 is the determinant derived by removing an electron from
orbital n of |Φ0〉: |Φn〉 ) n|Φ0〉, 〈Φm| ) 〈Φ0|m†. The
Hamiltonian matrix element between two ionized determi-
nants is

Using the anticommutation relation pq† + q†p ) δpq, it is
not difficult to show that

Since the Fock matrix f is diagonal in the basis of
Hartree-Fock orbitals, the matrix element becomes

H ) ∑
pq

〈p|h|q〉p†q + 1
2 ∑

pqrs

〈pq|rs〉p†q†sr (9)

E0 ) 〈Φ0|H|Φ0〉 ) ∑
i

〈i|h|i〉 + 1
2 ∑

ij

〈ij| |ij〉 (10)

〈Φm|H|Φn〉 ) ∑
pq

〈Φ0|m†p†qn|Φ0〉〈p|h|q〉 +

1
2 ∑

pqrs

〈Φ0|m†p†q†srn|Φ0〉〈pq|rs〉 (11)

∑
pq

〈Φ0|m†p†qn|Φ0〉 ) ∑
i

〈i|h|i〉δmn - 〈n|h|m〉

(12)

1
2 ∑

pqrs

〈Φ0|m†p†q†srn|Φ0〉〈pq|rs〉 ) 1
2 ∑

ij

〈ij| |ij〉δmn -

∑
j

〈nj| |mj〉 (13)

〈Φm|H|Φn〉 ) δmn( ∑
i

〈i|h|i〉 + 1
2 ∑

ij

〈ij||ij〉) - 〈n|h|m〉 -

∑
j

〈nj| |mj〉 ) δmnE0 - 〈n|f|m〉 (14)

〈Φm|H|Φn〉 ) (E0 - εn)δmn (15)
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where εn ) 〈n|h|n〉 + ∑j〈nj||nj〉 is a diagonal Fock matrix
element and the energy of the n-th Hartee-Fock orbital.

Therefore, the Hamiltonian is diagonal in the basis of the
electron detached or ionized determinants. The excitation
energies of such states are equal to the respective orbital
energies. Thus, configuration interaction of singly detached
state functions is equivalent to Koopmans’ theorem. This
provides a useful diagnostic for TD-DFT: spurious states will
appear in large bases at the onset of Koopmans continuum,
i.e., HOMO energy.
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Acad. Sci. U.S.A. 2006, 103, 17154.

(40) Frutos, L. M.; Andruniów, T.; Santoro, F.; Ferré, N.; Olivucci,
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(54) Jung, G.; Bräuchle, C.; Zumbusch, A. J. Chem. Phys. 2001,
114, 3149.

(55) Rowe, D. J. ReV. Mod. Phys. 1968, 40, 153.

(56) Emrich, K. Nucl. Phys. A 1981, 351, 379.

(57) Sinha, D.; Mukhopadhyay, D.; Mukherjee, D. Chem. Phys.
Lett. 1986, 129, 369.

(58) Stanton, J. F.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 7029.

(59) Simons, J. Equation of motion (EOM) methods for computing
electron affinities. In Encyclopedia of Computational Chem-
istry; J. Wiley & Sons: New York, 2004.

(60) Krylov, A. I. Annu. ReV. Phys. Chem. 2008, 59, 433.

(61) Livshits, E.; Baer, R. Phys. Chem. Chem. Phys. 2007, 9,
2932.

(62) Chai, J.-D.; Head-Gordon, M. J. Chem. Phys. 2008, 128,
084106.

(63) Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular electronic
structure theory, Wiley & Sons: Chichester, England, 2000.

(64) Granovsky, A. PC GAMESS. http://classic.chem.msu.su/gran/
gamess/index.html (accessed April 27, 2009).

(65) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;
Gordon, M. S.; Jensen, J. H.; Koseki, S.; Mastunaga, N.;
Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.;
Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347.

(66) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld,
C.; Brown, S.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchen-
ko, S. V.; O’Neil, D. P.; Distasio, R. A., Jr.; Lochan, R. C.;
Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin,
C. Y.; Van Voorhis, T.; Chien, S. H.; Sodt, A.; Steele, R. P.;
Rassolov, V. A.; Maslen, P.; Korambath, P. P.; Adamson,
R. D.; Austin, B.; Baker, J.; Bird, E. F. C.; Daschel, H.;
Doerksen, R. J.; Drew, A.; Dunietz, B. D.; Dutoi, A. D.;
Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu,
C.-P.; Kedziora, G. S.; Khalliulin, R. Z.; Klunziger, P.; Lee,
A. M.; Liang, W. Z.; Lotan, I.; Nair, N.; Peters, B.; Proynov,
E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.;
Sherrill, C. D.; Simmonett, A. C.; Subotnik, J. E.; Woodcock
III, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.;
Chipman, D. M.; Keil, F. J.; Warshel, A.; Herhe, W. J.;
Schaefer III, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M. W.;
Head-Gordon, M. Phys. Chem. Chem. Phys. 2006, 8, 3172.

(67) Schreiber, M.; Silva-Junior, M. R.; Sauer, S. P. A.; Thiel, W.
J. Chem. Phys. 2008, 128, 134110.

(68) Ghigo, G.; Roos, B. O.; Malmqvist, P.-Å. Chem. Phys. Lett.
2004, 396, 142.

(69) Christiansen, O.; Koch, H.; Jorgensen, P. J. Chem. Phys.
1995, 103, 7429.

(70) Koch, H.; Christiansen, O.; Jørgensen, P.; de Meras, A. M. S.;
Helgaker, T. J. Chem. Phys. 1997, 106, 1808.

(71) Grimme, S. J. Chem. Phys. 2003, 118, 9095.

(72) Jung, Y.; Lochan, R. C.; Dutoi, A. D.; Head-Gordon, M.
J. Chem. Phys. 2004, 121, 9793.

(73) DiStacio, R. A., Jr.; Head-Gordon, M. Mol. Phys. 2007, 105,
1073.

(74) Rhee, Y. M.; Head-Gordon, M. J. Phys. Chem. A 2007, 111,
5314.

(75) Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. J. Chem. Phys.
2001, 115, 3540.

(76) Baer, R.; Neuhauser, D. Phys. ReV. Lett. 2005, 94, 043002.

(77) Stein, T.; Kronik, L.; Baer, R. J. Am. Chem. Soc. 2009, 131,
2818–2820.

(78) Pal, S.; Rittby, M.; Bartlett, R. J.; Sinha, D.; Mukherjee, D.
J. Chem. Phys. 1988, 88, 4357.

(79) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1994, 101, 8938.

(80) Levchenko, S. V.; Krylov, A. I. J. Chem. Phys. 2004, 120,
175.

(81) Larsen, H.; Hald, K.; Olsen, J.; Jørgensen, P. J. Chem. Phys.
2001, 115, 3015.

(82) Epifanovsky, E.; Kowalski, K.; Fan, P.-D.; Valiev, M.;
Matsika, S.; Krylov, A. I. J. Phys. Chem. A 2008, 112, 9983.

(83) Hager, B.; Schwarzinger, B.; Falk, H. Monatsh. Chem. 2006,
137, 163.

(84) Weinhold, F.; Landis, C. R. Chem. Edu.: Res. Pract. Eur.
2001, 2, 91.

(85) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter,
J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO
5.0; Theoretical Chemistry Institute, University of Wisconsin:
Madison, WI, 2001.

(86) Slipchenko, L. V.; Krylov, A. I. J. Chem. Phys. 2003, 118,
6874.

(87) Krylov, A. I.; Sherrill, C. D. J. Chem. Phys. 2002, 116, 3194.

(88) Simons, J. J. Phys. Chem. A 2008, 112, 6401.

(89) Simons, J. Acc. Chem. Res. 2006, 39, 772.

(90) Sobczyk, M. Simons, J. J. Phys. Chem. B 2006, 110, 7519.

(91) Solntsev, K. M.; Poizat, O.; Dong, J.; Rehault, J.; Lou, Y.;
Burda, C.; Tolbert, L. M. J. Phys. Chem. B 2008, 112, 2700.

(92) Baer, R.; Krylov, A. I. in preparation.

(93) Oana, M.; Krylov, A. I. J. Chem. Phys. 2007, 127, 234106.

(94) Olsen, S. Ph. D. Thesis, The University of Illinois at Urbana-
Champaign, Urbana, IL, 2004.

(95) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1999, 111, 8785.

(96) Pieniazek, P. A.; Arnstein, S. A.; Bradforth, S. E.; Krylov,
A. I.; Sherrill, C. D. J. Chem. Phys. 2007, 127, 164110.

(97) Hazi, A. U.; Taylor, H. S. Phys. ReV. A: At., Mol., Opt. Phys.
1970, 1, 1109.

(98) Dong, J.; Abulwerdi, F.; Baldridge, A.; Kowalik, J.; Solntsev,
K. M.; Tolbert, L. M. J. Am. Chem. Soc. 2008, 130, 14096.

CT900143J

1906 J. Chem. Theory Comput., Vol. 5, No. 7, 2009 Epifanovsky et al.



Quantum Chemical Benchmark Studies of the Electronic
Properties of the Green Fluorescent Protein

Chromophore: 2. Cis-Trans Isomerization in Water

Igor Polyakov,† Evgeny Epifanovsky,*,‡ Bella Grigorenko,† Anna I. Krylov,*,‡ and
Alexander Nemukhin†,§

Department of Chemistry, UniVersity of Southern California, Los Angeles, California
90089, Department of Chemistry, M.V. LomonosoV Moscow State UniVersity, Moscow
119991, Russia, and Institute of Biochemical Physics, Russian Academy of Sciences,

Moscow 119334, Russia

Received March 25, 2009

Abstract: We present quantum chemical calculations of the properties of the anionic form of
the green fluorescent protein (GFP) chromophore that can be directly compared to the results
of experimental measurements: the cis-trans isomerization energy profile in water. Calculations
of the cis-trans chromophore isomerization pathway in the gas phase and in water reveal a
problematic behavior of density functional theory and scaled opposite-spin-MP2 due to the
multiconfigurational character of the wave function at twisted geometries. The solvent effects
treated with the continuum solvation models, as well as with the water cluster model, are found
to be important and can reduce the activation energy by more than 10 kcal/mol. Strong solvent
effects are explained by the change in charge localization patterns along the isomerization
coordinate. At the equilibrium, the negative charge is almost equally delocalized between the
phenyl and imidazolin rings due to the interaction of two resonance structures, whereas at the
transition state the charge is localized on the imidazolin moiety. Our best estimate of the barrier
obtained in cluster calculations employing the effective fragment potential-based quantum
mechanics/molecular mechanics method with the complete active space self-consistent field
description of the chromophore augmented by perturbation theory correction and the TIP3P
water model is 14.8 kcal/mol, which is in excellent agreement with the experimental value of
15.4 kcal/mol. This result helps to resolve previously reported disagreements between
experimental measurements and theoretical estimates.

1. Introduction

The properties of the green fluorescent protein (GFP), which
converts blue light to green light, have inspired numerous
experimental and theoretical studies as well as many
important applications (see ref 1–3 and references therein).
This paper is the second in a series4 that focuses on accurate
calculations of the properties of biological chromophores

with ab initio methods using the model GFP chromophore,
4′-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI)
anion, as a benchmark system (Figure 1).

The cis-trans isomerization (or Z/E diastereomerization)
of the photoswitchable fluorescent chromophores plays an
essential role in their photophysical properties. For example,
their functionality is believed to be driven by photoinduced
cis-trans isomerization inside a protein matrix.5 Kindling
and blinking phenomena, as well as loss of fluorescence yield
of bare chromophores in solution, are also related to this
process. In a broader context, the photophysics of GFP is
similar to that of other fluorogenic unsymmetric methine
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dyes6–11 and is of interest with connection to organic
photovoltaic materials.

The majority of the experimental and computational
studies of this process focused on the excited-state dynamics.
However, the ground-state electronic potential-energy surface
(PES) also needs to be considered for two main reasons. First,
after photoisomerization has completed, the photoswitchable
protein returns to its initial state to prepare for the next cycle.
The recovery apparently takes place on the ground-state PES.
Second, the details of the ground-state isomerization can
elucidate the chromophore’s rearrangements along the more
complicated excited-state route. Despite previous studies of
the cis-trans photoisomerization of GFP-like chromopho-
res12–17 using quantum chemistry modeling,18–24 many
questions remain unanswered.

The process of cis-trans isomerization of the HBDI anion
in aqueous solution was investigated experimentally by He
et al.12 who estimated the free-energy differences and the
activation energies using the NMR technique. The authors
stressed that the activation energy of 15.4 kcal/mol derived
from their measurements in aqueous solution is in distinct
disagreement with the results of calculations,18,19 which
estimated that the barrier is above 21 kcal/mol. The relatively
low value of the barrier (as compared to other isomerization
reactions involving exocyclic double bonds) has also been
emphasized in subsequent studies of the isomerization and
several explanations have been suggested.13,17 For example,
thermal isomerization studies of model GFP-like com-
pounds13 suggested that different substituent groups may
have a significant effect on the activation energy by changing
the interaction between two resonance structures of the
chromophore. Tolbert and co-workers considered mecha-
nisms involving changes in the chemical structure of the
chromophore, e.g., addition/elimination pathway.17 No ab
initio calculations have been reported so far to resolve this
disagreement between experimental measurements and theo-
retical estimates and to explain the low value of the barrier.

2. Computational Methods

The equilibrium geometries were optimized by density
functional theory (DFT) with the PBE0 variant25 of the

Perdew-Burke-Ernzerhof (PBE) hybrid functional26 and
by complete active space self-consistent field (CASSCF)(14/
12). The cc-pVDZ basis set27 was used in both calculations.
The cis-trans isomerization pathways of the chromophore
were studied with the DFT and CASSCF methods. We
estimated the solvent effects by using continuum solvation
models as well as by explicit treatment of water molecules
in a quantum mechanics/molecular mechanics (QM/MM)
scheme. The Cartesian coordinates of optimized structures
along the isomerization pathway are given in the Supporting
Information.

The methods are outlined below and in the first paper in
this series,4 and the computational details are given in the
Results and Discussion section. Multireference second-order
perturbation theory (MRMP2) and dielectric polarizable
continuum model (D-PCM)33 calculations were carried out
with the PC GAMESS version28 of the GAMESS(US)
quantum chemistry package.29 Scaled opposite-spin-MP2
(SOS-MP2) calculations were performed with Q-Chem.30

GAMESS(US)29 was employed for C-PCM and surface and
volume polarization for electrostatic (SVPE) approach35

computations. The QM/MM implementation is based on PC
GAMESS28 and the Tinker molecular mechanics package.31

2.1. Continuum Solvation Models. To simulate solvent
effects on the chromophore’s cis-trans isomerization energy
profile in an aqueous solution, we employ three versions of
the continuum solvation model:32 D-PCM, C-PCM, and
SVPE. In the simplest approach, the D-PCM,33 the water
solvent is treated as a continuous unstructured dielectric with
a dielectric constant of 78.39. C-PCM34 is a version of PCM
that takes into account certain corrections in the boundary
conditions of the electrostatic problem in accord with the
conductor-like screening model. The SVPE approach35

provides an improved description of the volume polarization
contributions. This effect can be significant for reaction
barriers, especially for ionic solutes.35

2.2. Effective Fragment Potential-Based QM/MM
Method. Solvent effects can be described explicitly in a
combined QM/MM approach based on the effective fragment
potential (EFP) model.36,37 In this scheme, solvent molecules
(water in our case) are represented by effective fragments
in the MM-part. The fragments affect the Hamiltonian of
the QM-part (HBDI anion) by their electrostatic potentials
expanded up to octupole terms. The parameters of these one-
electron electrostatic potentials, as well as contributions from
interactions between polarizable effective fragments and the
QM-region, are computed in preliminary ab initio calcula-
tions of the electronic densities of individual fragments. The
exchange-repulsion potentials, which are combined with the
electrostatic and polarizability terms, are obtained from
preliminary ab initio calculations as well.

The original EFP approach36 treats interactions between
solvent molecules as EFP-EFP interactions. Studies of
chemical reactions in aqueous solution38,39 have shown that
replacing the EFP-EFP terms by the empirically calibrated
TIP3P potential yields a faster computational scheme for
large water clusters around the solute.

Figure 1. Chemical structure and atomic labels of the anionic
form of the model GFP chromophore HBDI in the cis (top)
and trans (bottom) conformations.
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3. Results and Discussion

3.1. Cis-Trans Isomerization Pathway in the Gas
Phase. On the ground-state PES, conversion between the
lower-energy cis-isomer and the higher-energy trans-isomer
takes place when the two rings are rotated along the C1I-C1B

bond as shown in Figure 1. The dihedral angle
N-C1I-C1B-H, which defines the reaction coordinate, is
denoted as τI.

The shape of the isomerization pathway can be character-
ized by: (i) the activation energy Ea defined as the relative
energy of the transition state (TS) with respect to the cis-
isomer; and (ii) the energy difference Etc between the trans-
and cis-forms. We began with gas-phase DFT calculations
with the PBE0 functional and the 6-31+G(d,p) basis set and
located stationary points that correspond to the cis-, trans-
and TS structures. The latter is characterized by a single
imaginary frequency of 725i cm-1. The intrinsic reaction
coordinate (IRC) profile was computed by starting steepest
descent pathways from the TS point in both directions along
the Hessian eigenvector that corresponds to the imaginary
frequency (shown in Supporting Information).

The results of this calculation are discouraging in two
aspects: the cusp-like shape of the profile (Figure 2), which
is consistent with the large value of the imaginary frequency
at the saddle point, and the value of the activation energy
Ea(DFT) ) 34.5 kcal/mol, which is more than twice as high
as the experimental estimate of 15.4 kcal/mol in aqueous
solution.12 The computed energy difference between the
trans- and cis- structures Etc(DFT) ) 2.3 kcal/mol is in
excellent agreement with the experimental estimate in
solution,12 most likely due to error cancellation.

In the CASSCF energy profile (Figure 2), the stationary
points were fully optimized with CASSCF(12/11)/cc-pVDZ.
The points in between representing the minimum-energy path
(MEP) were computed by varying the value of the dihedral
angle τI and minimizing the energy by relaxing all other
degrees of freedom. Although this curve does not represent
the true IRC path, it is expected to be a good approximation
to it. Along with a smoother curvature in the vicinity of the

saddle point (imaginary frequency 77i cm-1, see Supporting
Information), this profile yields a reasonable value of the
trans-cis energy difference Etc(CASSCF) ) 3.5 kcal/mol and
a much lower (and closer to the experimental estimate) value
of the activation energy Ea(CASSCF) ) 22.5 kcal/mol.

When calculating the energy profile in the CASSCF(12/
11) approximation with a fairly large active space, we
performed careful selection of the orbitals in order to avoid
dubious solutions of the variational problem. The finally
optimized orbitals and the corresponding occupation numbers
at selected points along the energy graph are presented in
the Supporting Information. To better understand changes
in the electronic structure along the isomerization pathway,
we also computed the energy profile with the smallest active
space CASSCF(2/2). Selection of active orbitals in this
approach was performed on the base of previously optimized
orbitals at the TS point. Then the descent in both directions
toward minimum-energy structures was easy to accomplish.
As expected, the corresponding value of the activation
energy, 25 kcal/mol, was slightly larger than that computed
with CASSCF(12/11).

As discussed in more detail below (and illustrated by the
population analysis presented in Supporting Information),
there is an increase in charge localization at the TS relative
to that the minimum-energy points.

The transition state located with SOS-MP2/cc-pVDZ is
characterized by an imaginary frequency of 188i cm-1.
Starting from that point, the MEP was taken to the cis- and
trans-configurations (Figure 2). Both DFT and SOS-MP2
exhibit a cusp at the transition state, which is a manifestation
of the multireference character of the ground-state wave
function. The composition of the CASSCF wave function
in the region discussed below confirms that.

Table 1 presents computed equilibrium geometry param-
eters in the bridging region: the C1P-C1B and C1I-C1B

bond lengths and the τP (C2P-C1P-C1B-H) and τI (N-
C1I-C1B-H) dihedral angles (Figure 1). The parameters
optimized at the PBE0/6-31+G(d,p), CASSCF(12/11)/cc-
pVDZ, and SOS-MP2/cc-pVDZ levels are in agreement with
those obtained by Olsen and Smith23 with SA3-CAS(4/3)/
DZP, which stands for CASSCF with the (4/3) active space
averaged over three states computed with the DZP basis set.
Overall, the geometry parameters at the stationary points are
rather insensitive to the level of theory: DFT, large active
space state-specific CASSCF, small active space state-
averaged CASSCF, and SOS-MP2 yield bond lengths that
agree within 0.02 Å and angles that agree within 2°.

At both cis- and trans-equilibrium points, the molecule is
essentially planar except that the methyl groups naturally
have out-of-plane atoms. Analysis of the structures reveals
that the difference between C1P-C1B and C1B-C1I is less than
expected for the structure shown in Figure 1. This can be
explained by considering two resonance structures of the
HBDI anion, see figure 2 from ref 4. The interaction between
these two structures results in charge delocalization between
two oxygen atoms and in scrambling CC bond orders as
discussed, for example, in ref 23. The C1P-C1B bond acquires
a double-bond character, whereas the order of C1B-C1I bond
is reduced. Natural bond orbital (NBO)40,41 charges and bond

Figure 2. Computed energy profiles of cis-trans ground-
state isomerization of the HBDI anion in the gas phase: (1)
IRC calculated with DFT(PBE0)/6-31+G(d,p); (2) MEP cal-
culated with CASSCF(12/11)/cc-pVDZ; and (3) MEP calcu-
lated with SOS-MP2/cc-pVDZ.
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orders (see ref 4) are consistent with computed bond lengths.
Overall, CASSCF slightly exaggerates bond alternation
relative to DFT (or MP2, see ref 4) in favor of the canonical
structure (Figure 1).

At the TS, the two rings are nearly perpendicular to each
other (τI ) 87-88°), which disturbs the π system and breaks
the resonance interaction. The bond alternation pattern is
reversed such that C1P-C1B becomes shorter than C1B-C1I,
suggesting that one of the two resonance structures becomes
dominant. All the methods agree on the magnitude of the
change relative to the equilibrium structures: C1P-C1B, which
is longer at the cis- and trans-geometries, becomes shorter
by about 0.04 Å at the TS, whereas the C1B-C1I bond is

about 0.07 Å longer at the saddle point. NBO charges (Table
2) and the molecular orbital picture (Figure 3) reveal almost
complete charge localization on the imidazolin ring.

Despite the similarity of the computed geometry param-
eters and charge distributions at the minima and the TS
computed with DFT and CASSCF, respective activation
energies differ by more than 10 kcal/mol (34.5 versus 22.5
kcal/mol). Note that the corresponding cis-trans energy
differences are very close: 2.3 and 3.5 kcal/mol, respectively.
A close inspection of the charges from Table 1 reveals
slightly more polar charge distribution for the PBE0 density:
the positive charge on the bridge moiety is 0.19 versus 0.13
at the CASSCF level. Because of the large energy penalty

Table 1. Geometry Parameters at the Stationary Points for the Gas-Phase Cis-Trans Chromophore Isomerizationa

structure method C1P-C1B C1B-C1I τP τI

cis-isomer PBE0/6-31+G(d,p) 1.404 1.385 0 180
CASSCF(12/11)/cc-pVDZ 1.406 1.383 0 180
SOS-MP2/cc-pVDZ 1.415 1.397 0 180
SA3-CAS(4,3)/DZPb 1.408 1.382 0 180

transition state PBE0/6-31+G(d,p) 1.365 1.458 0.3 88.2
CASSCF(12/11)/cc-pVDZ 1.362 1.477 1.0 86.4
SOS-MP2/cc-pVDZ 1.374 1.476 0.0 87.6

trans-isomer PBE0/6-31+G(d,p) 1.403 1.392 0 0
CASSCF(12/11)/cc-pVDZ 1.402 1.395 0 0
SOS-MP2/cc-pVDZ 1.414 1.405 0 0
SA3-CAS(4/3)/DZPb 1.407 1.390 0 0

a Distances in Å and angles in degrees. b Ref 23.

Table 2. Cumulative Natural Charges on the Fragments of the HBDI molecule: the Phenyl and Dimethylimidazolin Rings
and the CH bridge Calculated with CASSCF(12/11) and DFT (PBE0 Functional)

CASSCF(12/11)/cc-pVDZ PBE0/6-31+G(d,p)

cis TS trans cis TS trans

Gas Phase
phenyl –0.61 –0.20 –0.50 –0.59 –0.30 –0.57
bridge 0.13 0.13 0.11 0.10 0.20 0.09
imidazolin –0.52 –0.93 –0.61 –0.51 –0.90 –0.52

Solutiona

phenyl –0.85 –0.09 –0.91 –0.63 –0.19 –0.70
bridge 0.14 0.08 0.11 0.13 0.16 0.13
imidazolin –0.29 –0.99 –0.20 –0.50 –0.97 –0.43

a Calculated with QM/MM: EFP for the solvent-QM part interaction and TIP3P for the water-water interaction.

Figure 3. Frontier valence molecular orbitals of the HBDI anion in the cis-form (left) and at the transition state of the cis-trans
isomerization path (right).
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due to charge separation in the gas phase, small differences
in ionicity may produce a large effect. Another notable
difference is larger asymmetry in oxygen charges: at the
CASSCF level the imidazolin oxygen is by 0.22e more
negative than that of the phenyl oxygen, whereas at the DFT
level this difference is reduced to 0.15. This suggests a larger
contribution of the second resonance structure in the
CASSCF wave function, which can also contribute to the
energy difference.

More ionic character of the PBE0 density and the cusp-
like shape of the profile (Figure 2) are due to the multicon-
figurational character of the wave function at the TS, which
is not adequately described by DFT (or MP2). The CASSCF
amplitudes show almost equal weights of the two dominant
configurations, (HOMO)2 and (HOMO)1(LUMO)1 at the TS.
The HOMO and LUMO at the TS differ considerably from
those at the equilibrium geometry (shown in figure 3 of ref
4), they become localized on the imidazolin and phenyl rings,
respectively. Thus, (HOMO)2 and (LUMO)2 correspond to
the two charge-localized configurations, and their interaction
results in less ionic electron distribution. The ionicity is also
reduced by (HOMO)1(LUMO)1.

A stability analysis of the Hartree-Fock wave function
at the TS shows a RHF-UHF (restricted and unrestricted
Hartree-Fock) instability with a negative eigenvalue of
-0.037. The DFT/PBE0 solution, however, proves to be
stable, which means that using the symmetry broken
unrestricted solution to achieve better description of the
barrier will not be useful in this case. Therefore, a multi-
configurational approach is necessary not only for describing
excited-state isomerization of the GFP-like chromophores
but also for modeling isomerization in the ground state.

Although the CASSCF wave function is capable of
capturing the multiconfigurational character of the wave
function, it needs to be augmented by dynamical correlation
to provide accurate energy differences. We included dynami-
cal correlation correction via MRMP2 for the Etc and Ea

energies (at the CASSCF geometries). This yields an
activation energy of Ea ) 26.2 kcal/mol, which is 3.7 kcal/
mol higher than that of the CASSCF result.

The CASSCF results represent an improvement over DFT;
however, there is still a considerable discrepancy between
the theoretical (22-26 kcal/mol) and experimental (15.4 kcal/
mol) values for Ea, as noted by the authors of experimental

studies.12,13,17 Below we demonstrate that this discrepancy
is resolved when solvent effects are taken into account.

3.2. Cis-Trans Isomerization Pathway in Aqueous
Solution: Continuum Solvation Models. Continuum sol-
vation models32 provide a reasonable starting point in
modeling ground-state isomerization in aqueous solution. At
first, two versions of the polarized continuum model (PCM),
D-PCM33 and C-PCM,34 were applied to optimize the
equilibrium geometry parameters of the cis- and trans-
isomers and the TS configuration and to compute the relative
energies ∆Etc and Ea at the PBE0/6-31+G(d,p) level. Both
models produced similar results: ∆Etc ) 2.1 (D-PCM) and
2.3 kcal/mol (C-PCM); Ea ) 33.5 (D-PCM) and 34.0 kcal/
mol (C-PCM). The geometry parameters and the energies
are close to the gas-phase values obtained with the same
DFT model. These results are fairly stable with respect to
the basis set: upon expanding it to 6-311++G(2d,p), Ea and
∆Etc change by less than 1.5 and 0.7 kcal/mol, respectively.
Table 3 summarizes solvent effects on Etc and Ea computed
using different approaches.

Next, we considered a new version of the continuum
solvation model, SVPE,35 which has recently been imple-
mented in GAMESS(US),29 for the single point calculations
of relative energies ∆Etc and Ea at the gas-phase geometry
parameters. At the PBE0/6-31+G(d,p) level, we obtained a
considerable reduction of the activation energy compared to
the PCM results: Ea ) 24.6 kcal/mol, while the energy ∆Etc

) 2.1 kcal/mol was almost the same as in the PCM model.
According to a comment by Chipman,35 the improvements
introduced in SVPE do affect the reaction barrier estimated
with the continuum solvation models, especially for charged
substrates. The large solvent effect on Ea (9.1 kcal/mol
reduction relative to the gas-phase value) is consistent with
the more ionic character of the TS (see Table 2).

Finally, we combined the SVPE model with the adequate
description of the electronic structure of the solute and carried
out the calculations of relative energies with the CASSCF(12/
11)/cc-pVDZ description for the chromophore. The quanti-
ties, ∆Etc ) 2.6 and Ea ) 9.9 kcal/mol, can now be directly
compared to the experimental free-energy difference of 2.3
and 15.4 kcal/mol.12 The reduction of about 15 kcal/mol in
Ea when going from DFT to CASSCF results within the
SVPE solvation model is consistent with the corresponding
reduction (13 kcal/mol) in the gas-phase calculations.

Table 3. Cis-Trans Energy Difference ∆Etc and the Energy Barrier Ea for the Cis-Trans Isomerization of the HBDI Anion
Calculated at Various Levels of Theory for the Chromophore Molecule and Solvent

method ∆Etc, kcal/mol Ea, kcal/mol

chromophore solvent gas phase solution shift gas phase solution shift

PBE0/6-31+G(d,p) 2.3 34.5
D-PCM 2.1 -0.2 33.5 -1.0
C-PCM 2.3 +0.0 34.0 -0.5
SVPE 2.1 -0.2 24.6 -9.9
QM/MMa 5.0 +2.7 26.0 -8.5

CASSCF(12/11)/cc-pVDZ 3.5 22.5
SVPE 2.6 -0.9 9.9 -12.6
QM/MMa 2.1 -1.4 11.1 -11.4

MRMP2/cc-pVDZ 3.7 26.2

a Calculated with QM/MM: EFP for the solvent-QM part interaction and TIP3P for the water-water interaction.
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Moreover, DFT and CASSCF agree in the magnitude of the
reduction of Ea due to solvent (9.1 and 12.6 kcal/mol,
respectively). Thus, the absolute value of Ea is overestimated
by DFT due to the multiconfigurational character of the
electronic structure at the TS geometry, which is correctly
captured by CASSCF.

3.3. Cis-Trans Isomerization Pathway in Aqueous
Solution: Explicit Solvent Molecules. The relative energies
∆Etc and Ea for the HBDI anion inside a cluster of water
molecules were computed using a QM/MM technique. To
build the starting point, the chromophore molecule at the
gas-phase TS geometry was placed in a sphere of 200 water
molecules using the VMD computer program.42 After
running short molecular dynamics trajectories at various
temperatures, the energy was minimized using molecular
mechanics with the CHARMM force field43 by keeping the
solute species frozen. Then the solvent outside the first
solvation shell was removed with 49 water molecules com-
pletely covering the chromophore remaining in the system. This
saddle point structure was reoptimized for all geometric degrees
of freedom by QM/MM using DFT with the PBE0 functional
and the 6-31+G(d,p) basis for the QM-part (chromophore),
EFP36 for QM-solvent interactions, and the empirical TIP3P
potential for water-water interactions. The steepest descent
pathways taken in both directions from the optimized TS lead
to the cis- and trans-isomers of the trapped chromophore
(Figure 4). The energies obtained with this method, ∆Etc )
5.0 kcal/mol and Ea ) 26.0 kcal/mol, are consistent with the
DFT/SVPE calculations (Table 3).

The energies of the cis-, trans- and TS structures were
also calculated using CASSCF(12/11) for in the QM-part.
The interactions between the chromophore molecule and
solvent and between the water molecules were handled with
EFP and TIP3P, respectively. In line with the gas-phase and
dielectric continuum model results, the activation energy is
lower at the CASSCF level relative to those of DFT: ∆Etc

) 2.1 kcal/mol, Ea ) 11.1 kcal/mol.

The relative energies can be further refined by including
the dynamical correlation effects. In the gas phase, account-
ing for dynamical correlation via MRMP2 raises the CAS-
SCF activation barrier by 3.7 kcal/mol. Applying that
correction, we estimate the activation energy for the
cis-trans isomerization of the GFP chromophore in aqueous
solution to be 14.8 kcal/mol. The remaining discrepancy with
the experimental value of 15.4 kcal/mol12 can be partly
attributed to the differences between the potential-energy and
the free-energy barriers. The present QM/MM model with
only 49 explicit water molecules is not sufficient for
describing the statistical state in solution. This water solvation
shell completely covers the chromophore molecule and
accounts for principal environmental effects, but precise free-
energy values, along the isomerization pathway, should be
estimated by using more appropriate condensed-phase mod-
els. As shown, e.g., in ref 44, no considerable changes in
conclusions are expected if the dielectric continuum model
is applied on top of the model with explicit water molecules.

4. Conclusion

Calculations of the cis-trans isomerization pathway require
wave functions that are flexible enough to reflect the
multiconfigurational character of the transition state. CAS-
SCF gives a qualitatively correct curve, whereas DFT and
SOS-MP2 fail at the twisted geometries. The gas-phase
CASSCF value of the barrier height is 10 kcal/mol higher
than that of the experimental value; however, the inclusion
of solvent effects brings it down to 9.9-11.1 kcal/mol, which
agrees well with 15.4 kcal/mol derived from experimental
measurements. Including dynamical correlation correction
yields 14.8 kcal/mol, which is within 0.8 kcal/mol from the
experiment. Good agreement between SVPE and QM/MM
calculations further supports the validity of our results. A
large solvent effect on Ea is due to the more ionic character
of the TS, where the negative charge is localized on
imidazolin ring, which is in contrast to the equilibrium
structure, where the negative charge is delocalized between
the two rings. Our calculations help to resolve previous

Figure 4. Cis-trans isomerization of the chromophore inside
a cluster of water molecules. Relative energies of the station-
ary points are computed with QM(CASSCF(12/11)/cc-pVDZ)/
EFP/MM(TIP3P).
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disagreements between theory and experiment with respect
to the GFP chromophore isomerization in an aqueous
solution.
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L. V.; Trowitzsch, S.; Weber, G.; Eggeling, C.; Grubmüller,
H.; Hell, S. W.; Jakobs, S. Proc. Nat. Acad. Sci. U.S.A. 2005,
102, 13070.

(25) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.

(26) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. B:
Condens. Matter Mater. Phys. 1996, 77, 3865.

(27) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.

(28) Granovsky, A. PC GAMESS. http://classic.chem.msu.su/gran/
gamess/index.html (accessed April 27, 2009).

(29) Schmidt, M. W.; Baldridge, K. K. J. A.; Boatz, S. T.; Elbert;
Gordon, M. S.; J. H.; Jensen, S.; Koseki; Mastunaga, N.;
Nguyen, K. A. S.; Su, T. L.; Windus; Dupuis, M.; Montgom-
ery, J. A. J. Comput. Chem. 1993, 14, 1347.

(30) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld,
C.; Brown, S.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchen-
ko, S. V.; O’Neil, D. P.; Distasio, R. A. R. C., Jr.; Lochan,
Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin,
C. Y.; Van Voorhis, T.; Chien, S. H.; Sodt, A.; Steele, R. P.;
Rassolov, V. A.; Maslen, P.; Korambath, P. P.; Adamson,
R. D.; Austin, B.; Baker, J.; Bird, E. F. C.; Daschel, H.;
Doerksen, R. J.; Drew, A.; Dunietz, B. D.; Dutoi, A. D.;
Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu,
C.-P.; Kedziora, G. S.; Khalliulin, R. Z.; Klunziger, P.; Lee,
A. M.; Liang, W. Z.; Lotan, I.; Nair, N.; Peters, B.; Proynov,
E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.;
Sherrill, C. D.; Simmonett, A. C.; Subotnik, J. E.; Woodcock,
H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman,
D. M.; Keil, F. J.; Warshel, A.; Herhe, W. J.; Schaefer, H. F.;
Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M.
Phys. Chem. Chem. Phys. 2006, 8, 3172.

(31) Ponder, J. W. TINKER-Software Tools for Molecular
Design. http://dasher.wustl.edu/tinker/ (accessed May 7, 2009).

(32) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. ReV. 2005, 105,
2999.

(33) Cossi, M.; Barone, V. J. Chem. Phys. 1998, 109, 6246.

(34) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.

(35) Chipman, D. M. J. Chem. Phys. 2006, 124, 224111.

Protein Chromophore: Cis-Trans Isomerization J. Chem. Theory Comput., Vol. 5, No. 7, 2009 1913



(36) Gordon, M. S.; Freitag, M. A.; Bandyopadhyay, P.; Jensen,
J. H.; Kairys, V.; Stevens, W. J. J. Phys. Chem. A 2001,
105, 293.

(37) Adamovic, I.; Freitag, M. A.; Gordon, M. S. J. Chem. Phys.
2003, 118, 6725.

(38) Nemukhin, A. V.; Grigorenko, B. L.; Topol, I. A.; Burt, S. K.
Phys. Chem. Chem. Phys. 2004, 6, 1031.

(39) Grigorenko, B. L.; Rogov, A. V.; Nemukhin, A. V. J. Phys.
Chem. B 2006, 110, 4407.

(40) Weinhold, F.; Landis, C. R. Chem. Edu.: Res. Pract. Eur.
2001, 2, 91.

(41) NBO 5.0. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.;
Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold,
F. NBO 5.0; Theoretical Chemistry Institute, University of
Wisconsin: Madison, WI, 2001.

(42) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics
1996, 14, 33.

(43) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. S.;
Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187.

(44) Nemukhin, A. V.; Topol, I. A.; Burt, S. K. J. Chem. Theory
Comput. 2006, 2, 292.

CT9001448

1914 J. Chem. Theory Comput., Vol. 5, No. 7, 2009 Polyakov et al.



Catalytic Mechanism of Diaminopimelate Epimerase: A
QM/MM Investigation

Marco Stenta,*,† Matteo Calvaresi,† Piero Altoè,† Domenico Spinelli,‡
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40126 Bologna, Italy, Dipartimento di Chimica Organica “A. Mangini”, UniVersità di
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Abstract: A QM/MM investigation, based on a DFT(B3LYP)//Amber-ff99 potential, has been
carried out to elucidate the mechanism of diaminopimelate epimerase. This enzyme catalyzes
the reversible stereoconversion of one of the two stereocenters of diaminopimelate and
represents a promising target for rational drug design aimed to develop new selective antibacterial
therapeutic agents. The QM/MM computations show that the reaction proceeds through a highly
asynchronous mechanism where the side-chain of a negatively charged Cys-73 (thiolate)
deprotonates the R-carbon substrate. Simultaneously, the Cys-217 thiolic proton moves toward
the same carbon atom on the opposite face, thus determining the configuration inversion. A
fingerprint analysis provides a detailed description of the influence of the various residues
surrounding the active site and clearly shows the electrostatic nature of the most important
contributions to the catalysis.

I. Introduction

During the past decade hybrid Quantum Mechanics/Molec-
ular Mechanics (QM/MM)1-8 methods have been success-
fully used to investigate large molecular systems. The study
of enzymatic reactivity8 certainly represents a field where
QM/MM methods have been most widely applied. These
hybrid methods are particularly suitable to deal with this class
of problems since the enzyme can be easily and almost
“naturally” partitioned into two regions: one (described at
the QM level) approximately corresponding to the active site
and the other (described at the MM level) that includes the
remaining part of the enzyme and, in some cases, the solvent
molecules.

In the present paper we use a QM/MM approach to provide
a complete and exhaustive analysis of an interesting enzy-
matic system (the diaminopimelate epimerase), and we
present a general strategy for the study of similar problems
involving enzymatic systems. In particular, we suggest
general criteria to build a reliable model-system (using
various dynamics techniques), and we show how, after
having computed the potential energy surface (PES), we can
use various tools to analyze the results and identify the key-
factors that control the catalytic mechanism.

In section II we introduce the basic principles of the
computational techniques employed in our study. These
techniques concern the features of our QM/MM1-8 approach
and the type of analysis used to rationalize in details the
enzyme catalytic effects. Our QM/MM code has been
developed according to the hybrid approach described in a
previous paper12 and is included in the COBRAMM9 suite
of programs together with the analysis tools described in the
following sections.

The catalytic mechanism of diaminopimelate (DAP) epi-
merase (E.C. 5.1.1.7)10-12 is the case study discussed in
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section III. This enzyme belongs to the group of lyases which
are capable of inverting the absolute configuration of a carbon
atom in substrates containing one (racemases) or more
stereocenters (epimerases).13 While many enzymes belonging
to this group (for instance alanine,14,15 serine, threonine
racemases) need the presence of a molecule of pyridoxal-
5′-phosphate (PLP)16 behaving as a cofactor, diaminopime-
late epimerase,10,11 and a few other members of the family,
like glutamate17-19 and proline20-22 racemases, can exert
their catalytic action without the participation of additional
molecules. The enzymes belonging to this class of racemases
and epimerases (i.e., those not requiring a cofactor), despite
a substantial difference in the active site structure, which is
due to the specificity for different substrates, share a pair of
catalytically important cysteine residues. In particular, di-
aminopimelate epimerase, that catalyzes the epimerization
of L,L- to D,L-meso-diaminopimelate (see Figure 1), without
assistance of PLP, operates via a “two base” mechanism
involving one active-site cysteine thiolate (Cys-73) acting
as a base that deprotonates the R-carbon of the substrate and
a second cysteine thiol group (Cys-217) that protonates the
opposite side Via a general-acid catalysis.

To stress the importance of understanding the catalytic
mechanism of DAP epimerase and its potential effects on
pharmacological research, a short discussion on the involve-
ment of this enzyme in some important metabolic pathways
can be helpful. It is well-known that bacteria, plants, and
fungi metabolize aspartic acid to produce four different amino
acids (lysine, threonine, methionine, and isoleucine) through
a sequence of reactions known as the “aspartate pathway”.23

These reactions produce several important metabolic inter-
mediates such as diaminopimelic acid, an essential compo-
nent of the bacterial cell wall biosynthesis.24 Members of
the animal kingdom do not possess this pathway and must

therefore acquire these essential amino acids through their
diet. Since the enzymes23 involved in this pathway are not
present in animals, inhibitors of them are promising targets
for the development of novel antibiotics, herbicides, and
fungicides. The recent emergence of bacterial resistance to
currently available antibiotics has determined a renewed
interest in the search for novel antibacterial compounds.
Since DAP epimerase is the key enzyme of the diami-
nopimelic acid/lysine branch of the aspartate pathway, it
represents an optimal target for developing new selective
drugs capable of blocking the synthesis of Gram-positive
bacterial cell walls (by interrupting the lysine synthesis) or
able to interfere with the building of the peptidoglycan layer
of Gram-negative and mycobacterial cell walls (by stopping
the D,L-diaminopimelate25 synthesis) without interfering with
host cell metabolism.

Thus, detailed information on this enzymatic mechanism
(concerted or stepwise process, role of the various residues
in the vicinity of the active site dyad (Cys-73 and Cys-217),
electrostatic interactions controlling the substrate selectivity)
is of primary importance and opens the way to important
applications in drug design. In principle, a new class of
antibiotics could originate from the discovery of specific
inhibitors of the diaminopimelate epimerase.

In the present paper we have chosen to investigate the
Haemophilus influenzae DAP epimerase because, for this
enzyme, kinetics10 and crystallographic11 studies are avail-
able in literature. The kinetic10 and the structural X-ray data11

have been very helpful in detecting the two catalytic cysteine
residues (Cys-73 and Cys-217), which are responsible for
the observed pH dependency of the reaction velocity (V/K
profiles in ref 10). These are characterized by pK values of
6.7 and 8.5 and must be unprotonated and protonated,
respectively, to allow the L,L- to D,L-meso-diaminopimelate
conversion (forward reaction). The protonation state must
be inverted for the reverse reaction (D,L-meso- to L,L-
diaminopimelate). The primary deuterium isotope effects
suggest that substrate epimerization together with the double
proton transfer strongly affect the reaction rate (rate-
determining step). However, the experiments indicate that
another slow step, which follows the product dissociation,
could be partially rate determining. This step, which corre-
sponds to the back-proton transfer involving, after product
release, the two catalytic Cys residues, restores the original
protonation state of the active site for subsequent turnovers.
On the basis of this experimental evidence the experimental
kcat value (128 s-1) for the forward (L,L f D,L) reaction
and the corresponding barrier of 15.6 kcal mol-1 (obtained
from kcat by applying the Eyring equivalence26) can be
associated, in principle, either to the substrate epimerization
step or the back-proton transfer occurring in the substrate-
free enzyme. Thus, this experimental value should be
considered as an upper limit for the activation energy of the
epimerization step.

II. Computational Details

II.A. Setting-up the System. To build a reliable model-
system of the diaminopimelate (DAP) epimerase, we used
the recently obtained crystal structures11 of this enzyme (from

Figure 1. The reaction catalyzed by the enzyme diami-
nopimelate epimerase.

Figure 2. A schematic representation of the partition scheme
of the whole system. The two main regions (MM and QM)
are subdivided into three layers (H, M, and L) when computing
energy and forces. “Microiterations” (Opt1) and “macroitera-
tions” (Opt2) refer to the optimization process applied to the
L and H+M regions, respectively.
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Haemophilus influenzae) binding two isomers of the irrevers-
ible inhibitor aziridino-DAP,27 which mimics the natural
substrate [PDB28 codes: 2GKE(L,L-AziDAP), resolution 1.35
Å and 2GKJ (D,L-AziDAP), resolution 1.70 Å]. The
methylene carbon of the aziridine ring of the two diastere-
omeric inhibitors is covalently bonded to the sulfur atom of
Cys-73 or Cys-217 after the nucleophilic attack of the sulfur
on the aziridine ring that irreversibly inhibits the enzyme.
The DAP epimerase backbones obtained from the two crystal
structures show negligible differences.11 The structural
features of the covalent bond between the cysteine sulfur
and the inhibitor (L,L-AziDAP or D,L-AziDAP) provides
information to model the mechanism of approach of the thiol
base during the R-deprotonation/protonation process of the
DAP substrate. We decided to use the coordinates from the
2GKE PDB file to build the model-system since 2GKE has
a better resolution than 2GKJ. We modified the L,L-AziDAP
into the natural substrate L,L-DAP, and we retained only
the A-conformer where multiple conformations of the amino
acids were available in the crystal structure. The model-
system obtained from these crystallographic data was pro-
tonated with the H++29 software, using the default param-
eters available in that package. This code employs an
automatic algorithm that computes pKa values for the various
ionizable groups in macromolecules and adds missing
hydrogen atoms according to the specified pH value of the
environment. The positions of the added hydrogen atoms are
also optimized by this algorithm. The protonation state of
all titratable residues was carefully checked by visual
inspection of the H++ output structure. It followed that all
Asp and Glu residues were unprotonated (negatively charged),
while all Lys and Arg residues were protonated (positively
charged). This result is consistent with the solvent exposure
of the side chain of all these titratable residues, with two
important exceptions: Glu-208 and Arg-209 which, however,
interact with the zwitterionic substrate by their charged side
chains. Furthermore, all His residues were found to be neutral
with the proton on the ε nitrogen atom. The only exception
was the double protonated (thus, positively charged) His-50
whose side chain is exposed to the solvent but is also
interacting with the hydroxyl group of the near Tyr-98
residue through the δ hydrogen of the side chain imidazole
ring. Since the accurate computation of the pK values of the
active site residue was beyond the purposes of our research
- and adequate experimental data were available - we did
not calculate the pK value of the catalytic Cys residues. The
protonation state of these two residues was decided on the
basis of the kinetics studies,10 (suggesting the presence of
one unprotonated Cys side chain, as outlined in the Introduc-
tion) and by inspection of the crystallographic structure of
the enzyme bound to a substrate mimic,27 indicating that the
thiolate moiety should correspond to Cys-73 to allow the
reaction to take place in the forward direction (L,Lf D,L).
Identical results were obtained using the Propka2.0 soft-
ware.30

The L,L-DAP and D,L-meso-DAP molecules were pa-
rametrized using the Generalized Amber Force Field
(GAFF).31 Partial atomic charges were assigned to atoms

using the AM1-BCC method32,33 as implemented in the
antechamber module of the AMBER8.0 package.34

The initial model-system geometry was fully minimized
at the MM level using the sander module of AMBER8.0.
The minimization was carried out with the Amber Force
Field (Amber-ff99)35 until the root-mean-square deviation
(rmsd) of the Cartesian elements of the gradient was less
than 0.0001 kcal mol-1. A full conjugate gradient minimiza-
tion approach and the General Born (GB) model36 to simulate
the aqueous environment (as implemented in the sander
module of the AMBER8.0 code) were used.

Finally we checked if the crystal structures of 2GKE and
2GKJ mimic precisely the natural binding mode of the
substrates or if the covalent bond between the enzyme and
the L,L-AziDAP and D,L-AziDAP inhibitors can perturb the
natural binding mode of L,L-DAP and D,L-meso-DAP. To
this purpose we carried out a conformational study of the
binding mode of L,L-DAP and D,L-meso-DAP within the
protein environment using different methods i.e. Cluster
Analysis, Simulated Annealing and Docking.

Cluster Analysis. We carried out high temperature Mo-
lecular Dynamics starting from the optimum structure
obtained for the complex. A region of 5 Å around the
substrate was free to move during the MD simulation. The
system was heated from 0 to 800 K in 100 ps, and then a
trajectory of 2 ns was computed at constant temperature (800
K). The integration step of 2 fs was used in conjunction with
the SHAKE algorithm37 to constrain the stretching of bonds
involving hydrogen atoms. The coordinates of the system
were saved on a trajectory file every 2 ps, giving a total of
1000 structures. Solvation effects were taken into account
using the GB model with a dielectric constant of 78.5. To
determine the most populated conformations of L,L-DAP
and D,L-meso-DAP within the protein binding pocket, we
performed a Cluster Analysis on the different conformations
visited by the two molecules during the simulation. To this
purpose we used the MMTSB toolset,38 and we clustered
different conformations of the substrates on the basis of
structural similarity; we carried out our analysis employing
the kclust module with a fixed radius of 1.0 Å on the
Cartesian coordinate rmsd computed for heavy atoms. Then,
we determined the centroid of each cluster. For each cluster
we chose the structure closest to the corresponding centroid
as representative of the cluster itself (this structure is
characterized by the smallest rmsd value with respect to the
centroid).

Simulated Annealing. We performed 10 cycles of simu-
lated annealing for the two complexes formed by the protein
and the substrate molecules L,L-DAP and D,L-meso-DAP.
We used the same parameters of the previous simulation,
and we heated the system from 0 to 1000 K in 30 ps, holding
at 1000 K for equilibration for 10 ps. Then, we cooled from
1000 to 0 K in 60 ps. The heat bath coupling for the system
was tight for heating and equilibration (0.1 ps). The cooling
phase was divided in three periods: during the first 48 ps
the cooling was very slow (coupling of 5.0 ps); this was
followed by a cooling phase of 6 ps (with coupling of 1.0
ps) and a last cooling phase of 6 ps (with a coupling changing
from 0.1 to 0.05 ps). At the end of the simulated annealing
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a complete minimization was carried out, and the final
coordinates of the complexes were retained.

Docking. The previous model obtained from the PDB
structure 2GKE was used in the docking calculations after
having deleted the ligand from the cavity site. The orientation
sampling of the substrate into the cavity was carried out using
spheres calculated by the sphgen module of DOCK6 39,40

within 10.0 Å of root-mean-square deviation (rmsd) from
every atom of the minimized structure of the ligand. Partial
atomic charges for the substrates were obtained with the
AM1-BCC method. We carried out flexible ligand docking
using the Anchor-and-Grow algorithm implemented in
DOCK6 with the Grid-Based Score function as primary
scoring function. The results were then rescored with the
new Amber score as secondary scoring function allowing a
minimization of the ligand and residues within 5 Å (the same
mobile residues of the previous calculations) for 100 steps.
The best 10 poses obtained in the ranking of L,L-DAP and
D,L-meso-DAP were considered for subsequent QM/MM
calculations.

II.B. QM/MM Details. The QM/MM potential9 is based
on a subtractive scheme2,9,41,42 (see Figure 1). The boundary
zone between the QM and MM regions is handled by means
of a hydrogen atom link approach,2 and a charge shifting
scheme within the electrostatic embedding method2 is
adopted to avoid hyper-polarization of the QM wave func-
tion. A special and particularly important feature of our QM/
MM approach9 is the partition of the system into three layers.
The innermost layer called “high” (H) is treated at the QM
level, while the outermost one, named “low” (L), is treated
at the MM level. The presence of an intermediate layer,
denoted as “medium” (M), improves the efficiency of the
geometry optimization procedure. It has been shown that
the decoupling43,44 of the QM an MM regions during the
optimization process can significantly improve the geometry
convergence (faster optimization) and the accuracy of the
results.43 This approach allows a full relaxation of the MM
region (“microiteration” phase44,45 carried out with a cheap
and fast optimization algorithm, like “steepest descent”,
indicated as Opt1 in Figure 1) at each optimization cycle of
the QM region (“macroiteration”, based on an accurate
algorithm, like BFGS46-49 and denoted as Opt2). It is
valuable to notice that, in the “macroiteration” step, the new
geometry projection task can be, alternatively, carried out
by a molecular dynamics code (MD), to obtain a molecular
dynamics simulation on the HM region (H layer + M layer).
During “microiterations” the HM region is kept frozen, and
its electrostatic potential is taken into account by means of
atomic point charges coming from the MM force field for
M atoms or from the QM calculations for H atoms
(CHELPG50 charges have been used in this work). This
approach, as pointed out by many authors and demonstrated
in a previous paper,22 gives good results in terms of the
simulation cost/efficiency ratio. The obtained results are also
in good agreement with more expensive methods. A possible
pitfall of this approach is the transition state search procedure
when it involves the simultaneous rearrangement of MM and
QM atoms. This can be solved by expanding the QM
subregion, but this causes, of course, an increase of the

computational cost. The introduction of the intermediate (or
“buffer”) layer (M) between the QM (H) and MM (L)
subregions partially overcomes this problem, because the M
layer is treated at the MM level but is optimized together
with the H region. This strategy allows a detailed description
of large molecular motions involving several tens of atoms
with a minor increase in the computational cost.

The QM/MM potential adopted throughout this work is
based on DFT51,52/B3LYP53 calculations using the double-�
DZVP54 basis set for all atoms of the QM region, while the
Amber-ff9935 force field has been employed for the MM
atoms (GAFF31 parameters have been adopted for the DAP
substrate). In the following discussion this potential will be
referred to as DFT(B3LYP/DZVP)/Amber-ff99 potential.

The nature of the critical points on the PES can be
determined by means of QM/MM numerical frequency
calculations on the whole enzyme. In these computations we
change only the geometry of the HM region in the presence
of the MM potential determined by the frozen L region.
Thus, a complete numerical frequency run (denoted as
“fullfreq” calculation) would require a total of 1 + 6NHM

QM/MM energy evaluations, NHM being the number of atoms
of the HM region. A different and stronger level of
approximation for frequency computations (simply denoted
as “freq” calculation) has been tested. Within this ap-
proximation we hypothesize that the small motions of an
MM atom have only a tiny effect on the wave function.
Under this assumption it becomes possible to save 6NM QM
computation (NM being the number of M atoms) by summing
the current MM energy value to the reference (initial) QM
energy when an MM atom is moved. Then, a new QM
computation is carried out only when an atom of the H region
is moved. In this way only 1 + 6NH wave function
evaluations are required. Both these approximations have
been tested, and the results obtained at the two levels show
a good qualitative agreement.

All the QM/MM computations described in this paper have
been carried out using the general-purpose package CO-
BRAMM,9 which interfaces many commercially available
QM and MM codes as well as some analysis routines. For
the present work we used the GAUSSIAN0355 (C02 version)
and AMBER8.034 packages to perform QM and MM
calculations, respectively. In the geometry optimization (to
locate minima and saddle-points) we applied for the HM
region (“macroiteration”) the BFGS optimization algorithm
implemented in the Gaussian code.45,56,57 For the L region
(“microiteration”) we used the “steepest descent” method
from the sander tool of AMBER8.0.

II.C. Fingerprint Analysis. In our QM/MM scheme all
contributions to energy within the H region are computed
by means of single point computations on a molecular system
(denoted as model-H) formed by the H region where properly
placed hydrogen atoms saturate the dangling bonds at the
QM-MM boundary (according to the hydrogen atom link
scheme).2,22 Bonding and nonbonding terms of the M and
L regions are computed at the MM level. A special caution
is required to take into account the QM-MM cross terms,
and many recipes have been proposed in literature to handle
this problem. We chose a general and rather popular approach
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that describes all cross terms (i.e., van der Waals, bonding,
bending, torsions), except the electrostatic ones, at the MM
level. We adopted the electrostatic embedding scheme (EES)
to describe the electrostatic contributions.22 This consists in
the computation of the QM wave function in the presence
of the atomic point charges of the M and L layers. We
assume that the polarization of the wave function determined
by this EES computations accounts for the electrostatic cross-
term interactions. Under this assumption it becomes easy to
derive a procedure that splits the cross-terms energy contri-
butions into single-residue contributions.

In this section we provide a short description of two
general procedures, named Direct and Reverse Finger Print
analysis (DFP and RFP, respectively), that allow to rank
the electrostatic effects of the single residues and a third
procedure (vdWFP) able to evaluate the van der Waals
contributions. These analyses can provide semiquantitative
information about the role of a given residue (or group of
residues) in determining the relative stabilization/destabiliza-
tion of two critical points. If, for instance, a transition state
is compared to the nearest minimum, then we can rank
the effects of each residue on the entity of the barrier for
the corresponding process. It is worth remembering that,
since the original publication by Karplus,58 the DFP ap-
proach has been used by several others authors59-66 (in many
cases the term “charge perturbation method” has been used),
and the method has been demonstrated to be a valuable
approach to obtain precious information and new insight into
enzyme catalysis.

To illustrate the specific features of our analysis, we
consider two critical points A and B located on the QM/
MM Potential Energy Surface. The overall electrostatic
contribution can be easily computed as follows. QM calcula-
tions in Vacuo on model-H (i.e., the QM region after
hydrogen addition) provide for the two points the corre-
sponding energy values E0

A and E0
B. QM calculations in the

presence of all atomic point charges give the two energy
values Et

A and Et
B. From these values, after subtraction of

the corresponding charge self-energies (et
A and et

B), we obtain
(eqs 1 and 2) the two quantities EQM

A and EQM
B (the charge

self-energy corresponds to the coulomb term describing the
interaction between point charges). EQM

A and EQM
B represent,

for A and B, respectively, the sum of pure QM and
electrostatic cross terms, as inserted in our QM/MM potential.

The net electrostatic effects of the MM regions on the QM
wave function Epol

A and Epol
B can be estimated by means of

eqs 3 and 4.

It is important to notice that the more negative these values
are, the greater is the charge stabilization effect (more
precisely, values smaller or greater than zero indicate that

the charge polarization contribution is stabilizing or desta-
bilizing, respectively).

A first comparison between A and B can be carried out
using the terms computed with eqs 1-4. In particular,
∆E0(A,B) and ∆EQM(A,B) (eqs 5 and 6) represent the QM
energy difference between A and B, in the absence and in
the presence of the MM atomic point charges, respectively.
Equation 7 outlines the connection between the differential
stabilization effect of charges on A and B. The stability factor
Stot(A,B) computed by eq 7 represents the magnitude of the
point charge effect in promoting or discouraging the passage
from A to B.

This analysis can provide important information on the
influence of the protein environment (described at the MM
level) on the rate of the reaction occurring within the small
QM region. An estimate, even if qualitative, of the contribu-
tion coming from each single residue can make this approach
particularly useful. If A and B are, for instance, a stable
species (minimum) and the near transition state (saddle
point), it becomes possible to detect the residues that most
significantly affect the barrier height, thus playing the main
catalytic effect.

We adopted two different decomposition schemes to rank
the influence of the various enzyme residues on the rate of
reaction A f B.

The first scheme, denoted here as Direct Finger Print
(DFP) analysis, requires a series of single point QM
calculations (SPc) on the QM region (i.e., model-H) for both
structures A and B (using the optimized QM/MM geometry).

After the evaluation of all terms needed to compute
Stot(A,B) (eqs 1 to 7), we perform N SPc’s (where N is the
total number of residues to analyze). In each calculation
model-H is surrounded by the atomic point charges of the
ith residue only (see Figure S1a in the Supporting Informa-
tion), with the charges placed according to the atomic
coordinates of the ith residue itself. This procedure provides
NEi

A and NEi
B energy values together with the corresponding

charge self-energy values ei
A and ei

B (this term represents the
pure electrostatic contribution among the point charges of
the ith residue only). We can easily compute the electrostatic
(Coulomb) effect of the ith residue on the QM region (Epol,i

A

and Epol,i
B from eqs 8 and 9) using eqs 3 and 4 (proposed for

the total electrostatic effect). This effect is stabilizing or
destabilizing if the corresponding value is lesser or greater
than zero, respectively.

We obtain the stability parameter Si (eq 10) for the ith

residue by comparing the values of Epol,i
A and Epol,i

B . If Si < 0,

EQM
A ) Et

A - et
A (1)

EQM
B ) Et

B - et
B (2)

Epol
A ) EQM

A - E0
A (3)

Epol
B ) EQM

B - E0
B (4)

∆E0(A, B) ) E0
B - E0

A (5)

∆EQM(A, B) ) EQM
B - EQM

A (6)

Stot(A, B) ) ∆EQM(A, B) - ∆E0(A, B) ) EQM
B - EQM

A -

E0
B + E0

A ) Epol
B - Epol

A (7)

Epol,i
A ) (Ei

A - ei
A) - E0

A (8)

Epol,i
B ) (Ei

B - ei
B) - E0

B (9)
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then the ith residue favors the transition from A to B. On the
contrary, if Si > 0 the ith residue slows down the process.

A further concern is important to establish the accuracy
of our method in decomposing the total electrostatic effect
into smaller components. An ideal decomposition scheme
should provide an exact equivalence between the total
electrostatic effects Epol

A and Epol
B and the terms Epolsumm

A and
Epolsumm

B obtained by summing up all single contributions Epol
A

and Epol
B values) as stated in eqs 11 and 12.

It is evident that, under the adopted approximations, the
terms Epolsumm

A and Epolsumm
B are not perfectly equivalent to Epol

A

and Epol
B . To estimate the error we introduce the following

three error parameters.

If the errors made on the two critical points A and B
(Xadd,S

A and Xadd,S
B) differ significantly, Xadd,S(A,B) is an

important evaluation of the reliability of the adopted
decomposition scheme.

An immediate outlook of the whole enzyme influence on
the A f B transformation can be obtained by plotting each
Si value against the corresponding residue number. The
relative magnitude of the stability parameter Si can be used
to rank the residues according to their importance in the
catalytic process. The results of the DFP analysis can be
affected by the basic approximations of our approach: the Si

factor is estimated by comparing the unperturbed in Vacuo
system (to obtain Epol

A and Epol
B ) and the system perturbed by

a single-residue (to obtain Epol,i
A and Epol,i

B ). However, in
principle, the latter situation can be rather different, in terms
of wave function polarization, with respect to the QM region
fully embedded into the MM point charge cloud (according
to the electrostatic embedding scheme).

An opposite scheme, referred to here as Reverse Finger
Print (RFP) analysis, can be used to improve the previous
description. We compute again the EQM

A , EQM
B , E0

A, and E0
B

terms by means of single point calculations (SPc) on the
model-H system in the presence and absence of the whole
set of atomic point charges. We define from these calcula-
tions the two terms Edest

A and Edest
B (eqs 16 and 17).

We perform N SP computations (N is the total number of
residues to analyze) where the system model-H is surrounded
by all atomic point charges except those corresponding to
the ith residue (see Figure S1b in the Supporting Information).
Charges are placed, as previously described for DFP,
according to the QM/MM optimized geometry. This proce-
dure provides N Eh,i

A and N Eh,i
B energy values and the

corresponding charge self-energies eh,i
A and eh,i

B , which
represent the pure electrostatic contributions of all point
charges except those corresponding to the “hole” of the
missed ith residue. We can now compute the electrostatic
effects Edest,i

A and Edest,i
B on the QM region, which are due to

the absence of the ith residue (eqs 18 and 19). These terms
represent a destabilization or stabilization if they are lesser
or greater than zero, respectively.

A destabilization parameter Di (eq 20) can be obtained
for each residue ith. Di < 0 or Di > 0 indicate that the ith

residue has the effect of reducing or enhancing the rate of
the A f B transformation, respectively.

Again, as previously outlined for the DFP analysis, the
summation over the single contributions Edest

A and Edest
B does

not perfectly correspond to the total electrostatic effects Edest,i
A

and Edest,i
B . In other words eqs 21 and 22 do not hold.

The error can again be estimated by the following three
error parameters (see eqs 23, 24, and 25).

Thus, Xadd,D(A,B) is a good estimate of the reliability of
the adopted decomposition procedure.

Plotting the Di values as a function of a residue index
provides information which is similar to that obtained from
the Si diagram and allows a ranking of the importance of
each residue in favoring/disfavoring the A f B transforma-
tion. The two diagrams are only apparently different, since
a residue which favors the process has a negative S factor
but a positive D factor.

Si ) Epol,i
B - Epol,i

A (10)

Epolsumm
A ) ∑

i)1

N

Epol,i
A (11)

Epolsumm
B ) ∑

i)1

N

Epol,i
B (12)

Xadd,S
A ) Epol

A - ∑
i)1

N

Epol,i
A (13)

Xadd,S
B ) Epol

B - ∑
i)1

N

Epol,i
B (14)

Xadd,S(A, B) ) Xadd,S
B - Xadd,S

B (15)

Edest
A ) -Epol

A ) E0
A - EQM

A (16)

Edest
B ) -Epol

B ) E0
B - EQM

B (17)

Edest,i
A ) (Eh,i

A - ei
A) - EQM

A (18)

Edest,i
B ) (Eh,i

B - ei
B) - EQM

B (19)

Di ) Edest,i
B - Edest,i

A (20)

Edestsumm
A ) ∑

i)1

N

Edest,i
A (21)

Edestsumm
B ) ∑

i)1

N

Edest,i
B (22)

Xadd,D
A ) Edest

A - ∑
i)1

N

Edest,i
A (23)

Xadd,D
B ) Edest

B - ∑
i)1

N

Edest,i
B (24)

Xadd,D(A, B) ) Xadd,D
B - Xadd,D

A (25)
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The estimate of the van der Waals contributions (vdWFP
analysis) is an additional useful tool to analyze the enzyme
catalytic effect. This analysis is rather straightforward, being
these contributions included in the QM/MM potential at the
MM level. Moreover the single-residue contributions are
additive for the MM force-field definition. We use a
procedure similar to DFP and RFP analysis to obtain
information on the role played by van der Waals interactions
of each residue on the A f B transformation. We compute
separately the van der Waals interaction energy between each
residue and the H layer (note that the system here is not
model-H). We obtain N (the total number of residues) energy
values (EVdW,i

A and EVdW,i
B ) for both A and B. The lower EVdW,i

B

is (relative to EVdW,i
A ), the greater is the stabilization for the

critical point under examination. It is easy to compare the
values obtained for the two structures and derive a stabiliza-
tion factor Wi (eq 26). In this case the contribution of each
component is perfectly additive (this follows from the
definition of the adopted force field).

The vdWFP analysis has been performed by means of
several calculations carried out with the anal module from
the AMBER8.0 package. The vdWFP results can be easily
represented using a plot of Wi versus i, similar to the
diagrams obtained for DFP and RFP.

The three methods of analysis previously described have
been implemented in the COBRAMM package. Useful
discussions on this type of analysis can be found in previous
works by Karplus and co-workers.58-63,65 These papers have
been very helpful and informative to develop our DFP and
RFP approaches. These computational tools have been used
here to obtain a per-residue analysis, but they can be easily
exploited for a generic Af B transformation to investigate
the effects arising from different groups of atoms or single
atoms. Thus, in principle, we can easily provide a per-atom
analysis, or alternatively, we can perform our analysis to
understand the role played in the catalysis by secondary

structures (R-helices or �-sheets or combinations of them)
present in the enzyme under examination.

III. Results and Discussion

III.A. Structure of the Initial Complex. The conforma-
tional studies of the binding mode of L,L-DAP and D,L-
meso-DAP using the three different methods described in
section II.A point to enzyme-substrate complexes which are
very similar in structure. The geometry of these complexes
is also very close to the crystallographic structures of 2GKE
and 2GKJ, that strictly mimic the natural binding mode of
the substrates but are characterized by a covalent bond
between the enzyme and L,L-AziDAP and D,L-AziDAP. In
the following discussion we refer to the structure obtained
in the full MM optimization of the final point provided by
the simulated annealing procedure (no cutoff concerning
long-range interactions was used in this procedure). This
geometry has been used to construct the starting point of
the QM/MM study.

The structural features of these complexes show why DAP
epimerase can bind only DAP isomers characterized by
configuration L at the distal ε-carbon. The binding pocket
has an asymmetric arrangement of residues that can form
(as a donor or acceptor) hydrogen bonds strictly suitable to
bind the L isomer at the distal site. The carboxyl group forms
a salt bridge with the positively charged side chain of Arg-
209 and three H-bonds with the side chains of Asn-64 and
Asn-190. At the same time the positively charged amino
group is hydrogen bonded to the side chains of Asn-64 and
Glu-208 and the carbonyl oxygen of Arg-209. These
structures show that the substrates enter the active site as
zwitterion.

When the L,L-DAP and D,L-meso-DAP are bound to the
enzyme the R-carboxyl group is bonded with the amidic
hydrogen of Gly-74, Asn-75, Gly-218, and Ser-219 and also
with the side chain of Ser-219. The charged amino group
forms hydrogen bonds with the side chains of the Asn-11,
Gln-44, and Glu-208 residues. These interactions are sche-
matically represented in Figure 3.

III.B. Model1: the Simplest Model System. The con-
struction of the model system is a crucial point in QM/MM
computations if we wish to obtain the most convenient cost/

Figure 3. Two-dimensional (A) and three-dimensional representation of L,L-DAP within the active site. The most important
residues involved in the H-bond network are shown (Asn-11 and Gln-44 are omitted for clarity).

Wi ) EVdW,i
B - EVdW,i

A (26)

EVdW,i
B > EVdW,i

A ⇒ Wi > 0 (27)

EVdW,i
B < EVdW,i

A ⇒ Wi < 0 (28)
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efficiency ratio for the adopted hybrid potential. Thus, the
atom selection to define the various layers (H, M, and L
regions) is of primary importance. In the present case we
have reduced the H layer to the smallest possible set of atoms
(see Figure 4A). Since only two cysteine residues are directly
involved in the enzyme-catalyzed stereoinversion process,
we have included in the H layer the side chains of Cys-73
and Cys-217, after saturation of the dangling bonds with
hydrogen atoms (atom link approach) and the entire diami-
nopimelate substrate. Some additional residues (see Table
S1 in the Supporting Information and Figure 4B,C) surround
the reacting core and are hypothesized to have an important
effect on the catalytic process. These residues have been
included in the M layer to improve the description of the
system without increasing the computational demand. All
remaining residues form the L region. No solvent effects
(either explicitly or implicitly) have been taken into account
in the PES computation. This can be considered a satisfactory
approximation because the active site is a deep pocket far
beneath the enzyme surface exposed to solvent. Moreover,
a careful comparison of the crystallographic structures of
L,L-AziDAP and D,L-AziDAP (the covalent complexes
between enzyme and reactant-like and product-like inhibitor,
respectively) shows that the substratef product conversion
does not cause important changes in the enzyme structure
outside the active site. For this reason, to avoid unrealistic
deformations of the structure, due to the lack of solvent, a
few residues of the L layer in the vicinity of the M border
were free to move during the “microiteration” steps of
geometry optimization, while all other residues belonging

to L have been kept “frozen” at the initial positions. The
“free” residues are not exposed (or exposed only to a
negligible extent) to the external enzyme surface (see Figure
4D). In the following discussion we will refer to this model
system as Model1.

The investigation of the Potential Energy Surface (PES)
for Model1 has demonstrated the existence of two critical
points M1 and M2 that describe the enzyme bound to the
reactant (L,L-DAP) and product (D,L-meso-DAP) molecule,
respectively. An opposite protonation state of the catalytic
cysteine dyad features M1 and M2. In particular, in M1 Cys-
217 is protonated and Cys-73 is unprotonated and also
oriented in such a way to easily grab a proton from substrate.
In the hypothesized reaction mechanism the side-chain of
the negatively charged Cys-73 captures a proton from the
carbon substrate, while the Cys-217 thiolic proton moves
toward the same carbon atom on the opposite face. It is not
evident from the experimental results if the stereoinversion
of the carbon atom is a concerted or stepwise process. In
the second case the PES should be characterized by an
intermediate species between two transition states. Any
attempt to locate the intermediate of the hypothetical stepwise
process has failed, and we have located only one Transition
State (TSC) where the two cysteine residues are almost
completely protonated, being the Sγ-H distance 1.43 and 1.36
Å for Cys-73 and Cys-217, respectively. This finding
accounts for a concerted but highly asynchronous process.
In TSC the substrate is deprotonated and planar. This
structure allows a delocalization of the partial negative charge
over the extended π orbital system. A measure of charge

Figure 4. Partitioning scheme adopted for Model1. (A) QM subsystem. (B) H layer (red), M layer (blue), free L layer (yellow),
frozen L layer (dark blue). (C) Hydrogen-bond network in the active site (H layer: ball and stick, M layer: stick). (D) Solvent
exposed surface: free L layer (yellow), frozen L layer (dark blue).
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delocalization can be obtained from the comparative analysis
of some relevant atomic distances and atomic point charges
(see Table S2 in the Supporting Information, where CHELPG
charges are reported). It is evident that the negative charge
is mainly localized on the two oxygen atoms of the carboxyl
group. Also, the carboxylic and -NH3 groups become more
negative and less positive, respectively, on passing from the
minima to the transition state. On the contrary, the depro-
tonated R carbon atom does not show a significant charge
variation. The charge delocalization is also proved by a bond
order decrease of both carboxylic C-O bonds and a
simultaneous bond order increase of the CR-C bond.

The computed reaction profile for DAP epimerization is
shown in Figure 5B (see also Table S3 in the Supporting
Information). Energy (∆E and ∆E*) and Gibbs free energy
(∆G and ∆G*) values relative to M1 are given in the figure.
Thermal energy corrections to compute Gibbs free energy
have been obtained by numerical frequency calculations on
the HM layer with a frozen L layer. Results obtained using
either the approximated (freq) or complete (fullfreq) fre-
quency computation approach are reported.

It is evident from the reaction profile that the product
complex (Enzyme/D,L-meso-DAP) is less stable than the
reactant complex (Enzyme/L,L-DAP) by 15.05 kcal mol-1.
This value becomes 13.48 and 14.23 kcal mol-1 when we
consider the free energy computed with the freq and fullfreq
procedure, respectively. The computed barrier for the ste-
reoinversion is about 24.11 kcal mol-1, while the corre-
sponding free activation energies obtained with the freq and
fullfreq procedure are almost identical (21.32 and 21.30 kcal
mol-1, respectively). The normal mode corresponding to the
imaginary frequency obtained for TSC describes the pro-
tonation/deprotonation process of the planar substrate. The
computation of numerical frequencies using the approximated
procedure freq gives results comparable to those obtained
by the fullfreq approach but with a significant saving of CPU
time. Also, the shape of the transition vector is very similar
in the two cases. Here the H and M layers are composed by
36 and 170 atoms, respectively. Thus, the fullfreq procedure

requires 1+(36 + 170)*6)1+(206)*6)1237 wave function
evaluations, while the freq procedure requires only 1+(36)*6)
217, which saves about the 80% of computation time.

We have carried out the fingerprint analysis for the three
critical points M1, M2, and TSC to obtain a detailed
description of the influence of the various residues surround-
ing the reacting core. This analysis should be also helpful
to ascertain the reliability of the adopted model system. In
Table 1 we have collected the values of the M1/M2 and
M1/TSC energy differences as obtained from QM calcula-
tions (single point) on the model-H system (obtained from
the QM/MM optimized geometries) in Vacuo and in the
presence of the atomic point charges of the whole enzyme.

The two minima are almost isoenergetic in Vacuo:
∆E0(M1,M2) is only -1.22 kcal mol-1. However, in the
presence of the atomic point charges the energy difference
(∆Eqm(M1,M2)) significantly increases and becomes 16.50
kcal mol-1, a value which is close to the QM/MM value of
15.05 kcal mol-1. This finding demonstrates the importance
on the M1/M2 equilibrium of the electrostatic interactions
due to the protein environment. In particular, the negatively
charged Glu-208 side chain (described at the MM level)
seems to play an important role in destabilizing M2 with
respect to M1. This is caused by the unfavorable electrostatic
interaction, occurring in M2, with the negatively charged
Cys-217 (see discussion below). A similar effect, even less
significant, is evident for the M1/TSC pair. The computed
barrier changes from 20.21 (∆E0(M1,TSC)) to 26.42 kcal

Figure 5. A) Schematic representation of the model-H subsystem for the three critical points M1, TSC, and M2. B) Reaction
profile (E and G denote total and Gibbs free energy, respectively).

Table 1. Effects (kcal mol-1) of the Electrostatic
Interactions on the M1/M2 and M1/TSC Energy Difference,
As Obtained for Model1

∆EQM/MM(M1,M2) 15.05
∆EQM/MM(M1,TSC) 24.11
∆E0(M1,M2)a -1.22
∆E0(M1,TSC)a 20.21
∆Eqm(M1,M2)b 16.50
∆Eqm(M1,TSC)b 26.42

a See eq 5. b See eq 6.
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mol-1 (∆Eqm(M1,TSC)) when atomic point charges are
added to the bare QM core.

In the Supporting Information we have reported the
computed values of the various terms occurring in eqs 1 to
36 for DFP and RFP analysis. Here we discuss the most
important stabilization (S) and destabilization (D) values
obtained with the two approaches for the two pairs M1/M2
and M1/TSC. S and D values for a few selected residues
for the pair M1/M2 are reported in Table S4 of the
Supporting Information. The effects of the various residues
are represented in the two diagrams of Figure 6.

It is evident from Figure 6 that Gly-76 plays a fundamental
role in stabilizing M1 with respect to M2. This stabilization
(Figure 7) is due the hydrogen bond involving the Sγ atom
of Cys-73. This interaction is stronger in M1 than in M2
because of the different protonation state of the sulfur atom:
in M2 this atom grabs the proton from the substrate and loses
part of its negative charge (see Table S2 in the Supporting
Information). This trend is evidenced by the (Gly-76)-NH---
Sγ-(Cys-73) distance that increases from 2.34 Å to 2.39 Å
on passing from M1 to M2. A major role in stabilizing M1
with respect to M2 is also played by Glu-208. In M1 this

Figure 6. DFP and RFP diagrams obtained for the M1/M2 pair in Model1 (see Table S4 in the Supporting Information).

Figure 7. Schematic representation of the residues playing a key-role in the stabilization/destabilization of the M1/M2 pair as
found in Model1. (•) Residues stabilizing M2 over M1; (2) Residues stabilizing M1 over M2.
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residue behaves as a triple hydrogen-bond acceptor: the
unprotonated carboxylic side chain interacts with the two
NH3 substrate groups and with the thiolic hydrogen atom of
Cys-217. Since in M2 this hydrogen atom has been trans-
ferred to the substrate, only two hydrogen bonds remain
active. Thus, the loss of one hydrogen bond and the negative
charge on the Cys-217 Sγ atom explain the strong destabi-
lization due to Glu-208 on M2. Gly-218 behaves as an
H-bond donor toward the substrate carboxylic group adjacent
to the R carbon undergoing the stereoinversion. The best
structural arrangement is found in M1 where the (Gly-218)-
NH---(-)OCO-(DAP) distance is 1.81 Å. This value increases
to 2.09 Å in M2 because of the stereo inversion, thus causing
a decrease of stabilization in M2. On the contrary, some
residues play an important role in stabilizing M2 with respect
to M1. For instance, the effect of Gly-74 is similar, but
opposite, to that of Gly-218. It behaves as an H-bond donor
toward the same substrate carboxylic group, but the interac-
tion favors the D,L-meso-DAP (M2). This is confirmed by
the (Gly-74)-NH---(-)OCO-(DAP) distance which becomes
shorter (from 1.77 to 1.70 Å) on passing from M1 to M2.
In a similar way Ala-216 stabilizes M2 because of a more
favorable structural arrangement of the NH3 group of D,L-
meso-DAP. The most important stabilizing effect for M2 is
due to Gly-220. This residue is a hydrogen-bond donor
toward the Sγ atom of Cys-217: when this atom is not

protonated (as in M2) this interaction becomes much stronger
and M2 is stabilized.

A list of selected residues (with the corresponding S and
D values) that play an important role in the electrostatic
catalysis by stabilizing or destabilizing TSC with respect to
M1 is reported in Table S5 of the Supporting Information.
The effects of the various residues are indicated in the two
diagrams of Figure 8, and the key interactions are shown in
Figure 9. The effect of Gly-76 and Gly-74 is similar to that
found for the M1/M2 pair: these residues stabilize and
destabilize M1 with respect to TSC, respectively, but to a
smaller extent. Glu-208 again stabilizes M1, because in TSC
one of the three H-bonds (involving the substrate NH3 group)
is almost completely lacking. The substrate carboxylic group
is a double hydrogen-bond acceptor toward Ser-219, and the
better structural arrangement favoring these interactions is
found in TSC. However, while the distance that features the
H-bond between the carboxylic group and (Ser-219)-OH
varies from 1.60 Å in M1 to 1.53 Å in TSC and 1.61 Å in
M2, the distance between the carboxylic group and (Ser-
219)-NH is almost constant in M1 and TSC (1.76 Å and
1.77 Å, respectively) and becomes 1.87 Å in M2. Thus, the
latter hydrogen bond does not play a key role in stabilizing
the transition state.

Figure 8. DFP and RFP diagrams for the M1/TSC pair in Model1 (see Table S5 in the Supporting Information).
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The analysis of the contributions of the various residues
demonstrates the general agreement of the DFP and RFP
analysis.

In Tables S6 and S7 of the Supporting Information we
have collected the van der Waals contributions of a few
selected residues. It is evident that these contributions are
significantly less important than the electrostatic contributions
(evidenced by DFP and RFP analysis) in determining the
relative stabilization/destabilization of the M1/TSC and M1/
TSC pairs. This suggests that, in the present case, it is
reasonable to consider only the electrostatic contributions
to rationalize the enzyme catalytic effect.

III.C. Model2: A More Accurate Model System. The
DFP and RFP analysis on Model1 has clearly shown the
role of single residues and their importance in determining
the shape of the potential surface. Since DFP and RFP can
identify the residues exerting the strongest effects on the
catalysis, they can help to improve the features of the model-
system and obtain more reliable results.

In the previous section we have shown that Glu-208 has
the most important effect in stabilizing M1 with respect to
TSC and M2. In Model1 Glu-208 is completely described
by an MM potential, while their interactions with the QM
core are taken into account by electrostatic and van der Waals
QM-MM cross terms. We focus here on the electrostatic
effects, being that the van der Waals terms are much smaller.
To check the reliability of Model1 and to establish if the
interactions between the residue Glu-208 and the substrate
are correctly described, it is essential to build a different and
more accurate model system, that we denote as Model2 (see
Figure S2 in the Supporting Information). The important
feature of Model2 is the inclusion of the side-chain of Glu-
208 in the H layer (see Figure S3). In this way the negatively
charged Glu-208 side-chain and its interactions with the
substrate molecule and the Cys-217 residue is fully described
at the QM level. We have determined for Model2 the three
critical points M1, M2, and TSC starting from the corre-
sponding structures obtained for Model1, and we have
carried out for each critical point freq and fullfreq computa-
tions and DFP and RFP analysis. Some important parameters
(structural features and charge distribution) are reported in
Table S8 in the Supporting Information.

The reaction energetics, as obtained for Model2, is
reported in Figure S3 in the Supporting Information. The

energy difference between reactants (Enz/L,L-DAP) and
products (Enz/D,L-meso-DAP) decreases and becomes 11.74
kcal mol-1 (the corresponding free energy values computed
with freq and fullfreq are 11.56 and 10.80 kcal mol-1,
respectively). The activation barrier only slightly changes
and with respect to Model1 becoming 25.31 kcal mol-1

(23.00 and 22.48 kcal mol-1 are the free energy values
obtained from freq and fullfreq procedure, respectively).
Again, the normal mode associated with the TSC imaginary
frequency is very similar when computed with the two
approaches (freq and fullfreq) and describes the protonation/
deprotonation process of the planar substrate.

Thus, a comparison of the results obtained for the two
model systems (Figures 5 and S3 and Tables S3 and S9 in
the Supporting Information) shows that the barrier associated
with the stereoinversion only slightly changes on passing
from Model1 (24.11 kcal mol-1) to Model2 (25.31 kcal
mol-1), while the inclusion of Glu-208 in the QM layer has
a significant effect on the M1/M2 relative energies (15.05
and 11.74 kcal mol-1 for Model1 and Model2, respectively).
The negligible variation of the barrier height suggests that
the description of the Glu-208 residue is reliable enough
at the MM level. On the contrary, since the inclusion of Glu-
208 in the model-system has a significant effect on the M1/
M2 energy difference, a QM description of Glu-208 seems
to be essential in the M1-M2 comparison. This finding can
be understood if we consider the particular geometrical
arrangement of M2 where the Glu-208 carboxylate is rather
close to the negatively charged sulfur atom of Cys-217. The
localized point charges placed on the carboxylate oxygen
atoms in the MM treatment are evidently not able to correctly
account for the interaction between the Cys-217 and Glu-
208 residues in the M2 structure.

A further understanding of the factors controlling the
energetics of the process is provided by the values reported
in Table 1 and 2 where we have collected the results of
QM calculations in Vacuo (∆E0) and in the presence of
the enzyme atomic point charges (∆Eqm) on the model-H
system. Interestingly, for both Model1 and Model2 the
M1/TSC and M1/M2 energy differences significantly vary
with respect to the QM/MM values when the “naked”
model-H system is considered (see (∆E0(M1,TSC) and
∆E0(M1,M2)). However, these terms become very similar
to the QM/MM values after inclusion of the enzyme

Figure 9. Schematic representation of the residues playing a key-role in the stabilization/destabilization of the M1/TSC pair as
found in Model1. (•) Residues stabilizing TSC over M1; (2) Residues stabilizing M1 over TSC.
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atomic point charges (compare ∆Eqm(M1,TSC) and
∆Eqm(M1,M2) to ∆EQM/MM(M1,TSC) and ∆EQM/MM-
(M1,M2), respectively). This clearly indicates that the
most important contribution to the catalysis is electro-
static.67

The results of DFP and RFP analysis (see Tables S10
and S11 in the Supporting Information) are comparable to
those obtained for Model1: the ranking order for the various
residues is almost identical in the two cases, except, of
course, for Glu-208 which has been included in the QM
region (see Figures S4-S7 in the Supporting Information).

III.D. Model3: Toward a Reliable Description of the
Chemical Transformation. We have shown in the previous
sections that DFP and RFP are extremely useful in
detecting the residues that play a key role in the catalysis.
In both Model1 and Model2 these important residues have
not been included in the QM region but belong to the MM
shell, and, consequently, their interactions are described
by the Amber potential. Thus, it is not surprising that the
reaction barriers computed for Model1 and Model2 (21.3
and 22.5 kcal mol-1, respectively) differ from the experi-
mental value (15.6 kcal mol-1, as reported in the Introduc-
tion). This is probably due to the failure of the MM force
field to properly describe the changes (on passing from
M1 to TSC) of the charge distribution that features the
hydrogen bond network involving the substrate and the
above-mentioned residues. The following important point,
which stems from the previous discussion, must be
outlined. Even if small model systems such as Model1
and Model2 are not able to quantitatively reproduce the
experimental data, they provide, when coupled to DFP
and RFP, a valuable tool to build more reliable model
systems, by making possible the inclusion in the QM
region of the residues indicated as important for the
catalysis. Following this approach we have defined the
new model system Model3 by adding to the QM shell all
residues detected by the DFP and RFP analysis carried
out for the three critical points M1, M2, and TS. In
particular, we have considered Gly-74, Gly-76, the
backbone of Asn-75, Gly-218, part of Ser-219 and Gly-
220. We have carried out single point calculations on
Model3 at the geometry previously obtained for Model2
(see section III.C). These new computations have been
performed at two different levels: DFT(B3LYP/DZVP)/
Amber-ff99 and DFT(B3LYP/TZVP)/Amber-ff99 levels
to examine the effect of increasing the basis set accuracy.

The results confirm the capability of DFP and RFP,
applied to small systems like Model1 and Model2, of
identifying the catalytically important residues. It is evident

from the results reported in Table 3 that the inclusion of the
new residues in the QM layer determines a significant
improvement in the computed reaction barrier (18.7 kcal
mol-1), even if single point calculations, rather than full
geometry optimizations, have been carried out. A further
improvement of the computed barrier (16.6 kcal mol-1) is
observed when the more accurate basis set TZVP is
employed.

IV. Biological Insights into a Class of
Enzymes: Reaction Mechanism and
Catalysis

According to sequence and structural similarity, glutamate
and aspartate racemases belong to one homologous family
of enzymes,11 while DAP epimerase and proline racemase
are usually collected in a different group. To elucidate the
general catalytic mechanism of this second family we
investigated in a previous paper22 the reaction surface of
proline racemase (TcPRAC).21 In particular we considered
the enzyme found in the eukaryotic parasite Trypanosoma
cruzi68 because it represents a promising target for drug
design against Chagas’ disease69 and can be considered a
reliable model for prokaryotic proline racemases.20,70,71 In
that study we used the same computational approach of the
present paper (i.e., a combination of a DFT(B3LYP/DZVP)/
Amber-ff99 potential9 and fingerprint analysis on the critical
points), and we described the mechanism of stereoinversion
of the proline R carbon to afford the un-natural D-proline
from the more abundant L-proline. We explained the enzyme
catalysis in term of electrostatic stabilization of the transition
state.

Even if TcPRAC and DAP epimerase belong to the same
family, they show very poor similarities in the active site
region (except for the conserved catalytically active cysteine
pair). This strong structural dissimilarity is due to the need
of accommodating in the reacting region two substrates
which significantly differ in the shape and electronic proper-
ties. In both enzymes the substrate within the active site is
present as a zwitterionic ion and is bound to the various
residues by a tight network of hydrogen bonds. These
interactions determine the right orientation of the substrate
by anchoring the amino and the carboxylic groups and, in
the case of DAP epimerase, the distal site of the molecule.
In particular, the carboxylic group seems to be highly relevant
to the catalytic process although not directly involved in the
chemical reaction (breaking and forming of chemical bonds).
To better understand this aspect, we must focus our attention
on the nature of the transition state that describes for both

Table 2. Effects (kcal mol-1) of the Electrostatic
Interactions on the M1/M2 and M1/TSC Energy Difference,
As Obtained for Model2

∆EQM/MM(M1,M2) 11.74
∆EQM/MM(M1,TSC) 25.31
∆E0(M1,M2)a 7.17
∆E0(M1,TSC)a 37.81
∆Eqm(M1,M2)b 10.20
∆Eqm(M1,TSC)b 24.45

a See eq 5. b See eq 6.

Table 3. Reaction Energies (∆EQM/MM(M1,M2)) and
Activation Energies (∆EQM/MM(M1,TSC)) Obtained for
Model3b

∆EQM/MM(M1,M2) ∆EQM/MM(M1,TSC)

Model3 (DZVP) 10.9 18.7
Model3 (TZVP) 10.2 16.6
experimentala 15.6

a The experimental activation energy corresponds to a free
energy change ∆G, as obtained by applying the Eyring equation
to the experimental kcat value. b Values are in kcal mol-1.
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enzymes a concerted but highly asynchronous mechanism.
This transition state corresponds to an almost fully depro-
tonated substrate where the R carbon (originally the sp3

carbon) and the carboxylic group form an extended planar
π system that delocalizes the partial negative charge left on
the substrate after proton abstraction. This charge delocal-
ization decreases the carbanionic character of the transition
state (as suggested by charge analysis) and increases the
negative charge on the carboxylic group (especially the two
O atoms). The final effect on the transition state is an increase
of the strength (and stabilization) of the hydrogen bonds
between the carboxylic group and some residues in the
vicinity of the cysteine pair.

The fingerprint analysis (DFP for TcPRAC9 and both DFP
and RFP for DAP epimerase) has evidenced the residues
which are responsible for the electrostatic catalysis. These
residues are hydrogen bond donor to the substrate carboxylic
group. It is worth pointing out that, even if the stabilization
of the transition state is determined by different residues in
the two enzymes, the nature of the overall catalytic effect
remains the same and can be mainly ascribed to specific
electrostatic contributions of “pre-organized” active sites
where some residues are in the optimum positions to
emphasize the effect of the stabilizing hydrogen-bonds. This
finding is in very good agreement with the conclusions
reached by Warshel.6,67,72-77

The presented results, beside helping to obtain a general
picture of the catalytic mechanism for an important class of
enzymes, allow the identification of common features shared
within the same enzyme family. This information should be
highly useful in the future for the design and development
of new drugs targeting this group of PLP-independent
racemases/epimerases.

V. Conclusions

In this paper we have provided a detailed description of the
reaction mechanism of the enzyme diaminopimelate (DAP)
epimerase, a promising target for rational drug design aimed
at developing new selective antibacterial therapeutic agents.
This enzyme represents a model for the PLP-independent
racemases/epimerases acting Via a two-base mechanism
involving a pair of cysteine residues (thiol/thiolate pair at
neutral pH11,27).

We have used a QM/MM computational approach based
on a DFT(B3LYP/DZVP)//Amber-ff99 potential.9 This ap-
proach is similar to that employed in a previous paper where
we have investigated the mechanism of proline racemase
(TcPRAC).21 Two different model-systems have been in-
vestigated. In one case (Model1) the entire substrate (DAP
molecule) and the side-chains of Cys-73 and Cys-217 (after
saturation of the dangling bonds with hydrogen atoms) have
been included in the H layer described at the QM level. The
remaining part of the enzyme has been treated at the MM
level (M and L layers). In the second model-system
(Model2) the side-chain of Glu-208 has been included in
the H region. Thus, in this case the negatively charged Glu-
208 side-chain and its interactions with the substrate molecule
and the Cys-217 residue have been completely described at
the QM level. Both model-systems have provided the same

mechanistic picture: the reaction proceeds through a highly
asynchronous mechanism where the side-chain of the
negatively charged Cys-73 (thiolate) captures a proton from
the carbon substrate. Simultaneously, the Cys-217 thiolic
proton moves toward the same carbon atom on the opposite
face. In the transition state the substrate is essentially
unprotonated and planar.

Direct and inverse fingerprint analysis (DFP and RFP
analysis) on the three critical points M1, M2, and TSC for
both Model1 and Model2, have provided a detailed descrip-
tion of the influence of the various residues surrounding the
active site and have clearly indicated that the most important
contribution to the catalysis is electrostatic. DFP and FFP
analysis carried out on Model1 have pointed out that Glu-
208 has the most important effect in stabilizing reactants
(M1) with respect to transition state (TSC) and products
(M2). The indication of the fingerprint analysis has suggested
including this residue in the QM region of the model. The
aim of this choice was to establish if the MM potential was
reliable to describe the interactions of Glu208 with the
substrate and Cys-217. A comparison of the energetics
obtained for the two model-systems has shown that, while
the stereoinversion barrier does not significantly change
(24.11 and 25.31 kcal mol-1 for Model1 and Model2
respectively), the inclusion of Glu-208 in the QM layer has
a stronger effect on the M1/M2 relative energy, which is
15.05 kcal mol-1 in Model1 and becomes 11.74 kcal mol-1

in Model2. This finding suggests that the MM description
of the Glu-208 residue is reliable when comparing reactants
(M1) and transition state (TSC), while a QM description of
this residue seems to be essential in the M1-M2 comparison.

Using the results of the fingerprint analysis on Model2
we have built a larger (and more reliable) model system,
Model3, where all important residues detected by DFP and
RFP have been included in the QM region. Single point
computations on Model3, using the Model2 structures and
the two basis sets DZVP and TZVP for the QM shell, have
provided activation energies in good agreement with the
experimental value of 15.6 kcal mol-1: 18.7 and 16.6 kcal
mol-1 at the DZVP and TZVP levels, respectively. These
results confirm the validity of our approach and the pos-
sibility of using DFP and RFP analysis to identify the
catalytically important residues and, thus, build reliable
model systems.
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Abstract: Protein dynamics has played a pivotal role in understanding the biological function
of protein. For investigation of such dynamics, normal-mode analysis (NMA) has been broadly
employed with atomistic model and/or coarse-grained models such as elastic network model
(ENM). For large protein complexes, NMA with even ENM encounters the expensive
computational process such as diagonalization of Hessian (stiffness) matrix. Here, we suggest
the hierarchical-component mode synthesis (hCMS), which allows the fast computation of low-
frequency normal modes related to conformational change. Specifically, a large protein structure
is regarded as a combination of several structural units, for which the eigen-value problem is
utilized for obtaining the frequencies and their normal modes for each structural unit, and
consequently, such frequencies and normal modes are assembled with geometrical constraint
for interface between structural units in order to find the low-frequency normal modes of a large
protein complex. It is shown that hCMS is able to provide the normal modes with accuracy,
quantitatively comparable to those of original NMA. This implies that hCMS may enable the
computationally efficient analysis of large protein dynamics.

1. Introduction

Normal mode analysis (NMA) has enabled one to understand
the protein dynamics, related to the biological function of
protein, based on the low-frequency normal modes that are
usually associated with the conformational change of
protein.1-3 The fundamental of NMA is to solve the eigen-
value problem for diagonalization of Hessian (stiffness)
matrix for protein structure.4-6 Here, the stiffness matrix is
computed based on the second-derivative of anharmonic
potential field with respect to atomistic coordinates at
equilibrium state, where potential is globally minimum.
Complexity of potential field for protein atomistic structure
leads to the computationally expensive process such as
energy minimization (to find the equilibrium state) and
calculation of stiffness matrix. This has led many research
groups to develop the computationally efficient algorithm
(or reduced model) to estimate the stiffness matrix and its
related low-frequency normal modes computed from NMA
with given stiffness matrix.

In a recent decade, there has been an attempt to develop
the coarse-grained model for protein structure by reducing
the degrees of freedom as well as simplifying the potential
field. One of the successful, broadly accepted coarse-grained
models is the Go model,6-9 where only R carbon atoms are
taken into account with a simplified potential field composed
of a backbone covalent bond stretch and ver der Waal’s
interaction for native contact. The Go model has successfully
predicted the protein dynamics such as conformational fluc-
tuation dynamics6 as well as protein unfolding mechanics.7-10

Currently, the Go model can be regarded as a versatile model
for the description of protein dynamics and/or mechanics.
In a similar spirit, Tirion11 first suggested a more simplified
protein structural model, referred to as an elastic network
model (ENM), in such a way that R carbon atoms are only
prescribed by the harmonic potential field in the neighbor-
hood. Despite its simplicity, ENM is able to reproduce the
low-frequency normal modes and the thermal fluctuation
behavior, quantitatively comparable to those estimated by
experiments (X-ray crystallography or nuclear magnetic
resonance) and/or atomistic simulation.11 ENM has been
broadly employed for gaining insight into the conformational
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transition upon ligand-binding. For instance, Bahar and
co-workers12-15 reported that conformational change of
proteins is well described by a few low-frequency normal
modes. Further, several research groups16-18 developed the
model for the description of conformational transition by
employing the ENM with constraints for computing the
incremental displacement based on normal modes for con-
formational change at a certain state. Karplus and co-
workers19 reported the plastic network model (PNM) (simi-
larly, mixed network model by Hummer and co-workers20)
based on ENM by mixing the two potential fields near two
distinct equilibrium states to find the pathway for confor-
mational change. Recently, ENM has been employed even
for studying protein mechanics such as protein unfolding
mechanics. These indicate that ENM becomes a universal
model for understanding the protein dynamic and/or
mechanics.

However, for a large protein complex, ENM may exhibit
the computational inefficiency for studying protein dynamics
based on NMA. In order to overcome the computational
inefficiency in obtaining the low-frequency normal modes,
there have been attempts to introduce the model reduction
methods applicable to ENM. For instance, Cui and co-
workers1 have implemented the block normal mode (BNM)
analysis to protein structure based on atomistic potential (see
Chapter 4 in ref 1). In their work, the protein motion is
described in the normal modes of blocks at the residue level
as well as the diagonalization scheme of sparse matrix for
blocks. Bahar and co-workers21 have first suggested the
coarse-grained elastic network model composed of nodes,
much less than the total number of residues, which are
connected by entropic springs. Here, they have used the
empirical parameters (such as force constant and cutoff
distance) to describe the coarse-grained elastic network
model. Recently, Eom et al.22,23 provided the model reduc-
tion method, referred to as model condensation, inspired by
the skeletonization scheme provided by Rohklin and co-
workers.24 Further, Jernigan and co-workers25,26 reported the
rigid cluster model, which regards protein structure as a
combination of rigid domains connected by harmonic springs.
Sanejouand and co-workers27 developed the rotational/
translational block (RTB) model, which dictates the protein
structure as the rigid blocks (containing more than one
residue). Those methods show that the low-resolution
structure described by a few degrees of freedom is sufficient
to study the protein dynamics such as conformational
fluctuation. Recently, Ma and co-worker28 suggested the
coarse-grained network model based on the RTB method.
Nonetheless, the quality of low-frequency normal modes is
generally degraded as the protein structure is further coarse-
grained. This indicates that coarse-graining of protein
structure may be sometimes inappropriate for studying the
conformational change that is related to low-frequency
normal modes.

In this work, we report the hierarchical component mode
synthesis (hCMS) for quantitative study on the low-frequency
normal modes of a large protein complex. Here, a protein
structure is regarded as consisting of structural subdomains,
where NMA is implemented, and then such normal-mode

information for each subdomain is assembled based on
geometric constraint. It is shown that hCMS is capable of
fast computation on low-frequency normal modes, quanti-
tatively comparable to those obtained by conventional NMA.
This implies that hCMS may enable one to study the large
protein dynamics with computational efficiency as well as
accuracy.

2. Model

2.1. Normal Mode Analysis (NMA) and Elastic Net-
work Model (ENM). NMA assumes that protein motion is
described by harmonic motion near equilibrium state.1,4,5 For
a given potential field V for a protein structure, the protein
motion is represented in the form of M(d2x/dt2) + Kx ) 0,
where M is the mass matrix (typically, diagonal matrix) and
K is the stiffness (Hessian) matrix given by K ) ∂x∂xV,
where ∂x is the gradient with respect to coordinates x. Let x
) uexp[iωt] with natural frequency ω and its corresponding
normal mode u. Then, the protein motion is described by an
eigen-value problem as follows: Ku ) ω2Mu.

ENM describes the protein structure as the harmonic spring
network such that residues within the neighborhood are
connected by a harmonic spring with an identical force
constant. The potential field V for ENM is in the form of11,13

where Rij is the distance between two residues i and j, Rc is
the cutoff distance given as Rc ) ∼10 Å, γ is the force
constant, H(x) is the Heaviside unit-step function, and
superscript 0 indicates the equilibrium state. The potential
field V can be also represented in the form of V ) (1/2)vTKv,
where v is the displacement vector for all residues, a symbol
T represents the transpose of a vector, and K is the stiffness
matrix composed of 3 × 3 block matrices Kij given by

Here, Rij ) Rj s Ri with Ri being a position vector for
residue i, and δij is the Kronecker delta defined as δij ) 1 if
i ) j; otherwise δij ) 0.

Statistical mechanics theory allows the computation of
correlation matrix S representing the thermal fluctuation
behavior1,13,29,30

where <A> represents the ensemble average (time average)
of the quantity A, kB is the Boltzmann’s constant, T is the
absolute temperature, and index p indicates the mode
index. Here, it should be noted that six zero-normal modes
corresponding to rigid body motions are excluded for
computing the correlation matrix S. The mean-square
fluctuation for residue i is given by <|Ri s Ri

0|2> )
S3(i s 1)+1, 3(i s 1)+1 + S3(i s 1)+2, 3(i s 1)+2 + S3(i s 1)+3, 3(i s 1)+3.

V ) γ
2 ∑ (Rij - Rij

0)2 · H(Rc - Rij
0) (1)

Kij ) -[γH(Rc - Rij
0)

(Rij
0)TRij

0

(Rij
0)2 ](1 - δij) - δij ∑

l*i

Kil

(2)

S ) 〈vTv〉 ) ∑
p)7

3N kBT

ωp
2

up
Tup (3)
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2.2. Component Mode Synthesis (CMS). For normal-
mode analysis of a protein structure, we have employed the
component mode synthesis (CMS), which has been broadly
utilized in engineering mechanics.31-33 For a clear descrip-
tion of CMS, we consider the protein structure (e.g.,
hemoglobin shown in Figure 1(a)) which is decomposed into
2 subdomains. The motion of subdomain A is constrained
by the subdomain B, and vice versa, in such a way that the
nodal points (residues) at interface between 2 subdomains
are constrained under the continuity of a displacement field.
In other words, the interactions between 2 subdomains are
prescribed by constraints at interface between 2 subdomains.
The correlation between motions of 2 subdomains with using
geometric constraints is a generic computational scheme in
CMS used in structural dynamics31-33 rather than using the
domain-domain interaction directly. In general, component
mode synthesis is implemented such that the number of nodal
points (residues) of a subdomain is much larger than that of
nodal points belonging to an interface (relevant to geometric

constraint). This indicates that block (subdomain) should be
selected in such a way that the degrees of freedom related
to geometric constraints (i.e., nodal points related to
block-block interaction described by constraint) should be
much less than that of block.

Now, for convenience, let us describe the motion of protein
structure decomposed into 2 subdomains without applying
the constraints at this moment. The constraints will be
implemented later in the assembly process. The potential
energy without constraints is given by

Here, prime indicates that constraints were not implemented
at this moment. Ki and ui represent the stiffness matrix and
displacement field for subdomain i (where i ) A or B),
respectively. In the similar manner, the kinetic energy without
constraints is in the form of

where Mi indicates the mass matrix for subdomains i (where
i ) A or B), and a symbol dot represents the time-derivative.
Then, we introduce the linear transformation such that the
displacement vector ui (where i ) A or B) is represented in
the form of ui(x, t) ) Φi(x) ·vi(t), where Φi(x) is the matrix
whose column vector is the eigenvector of the stiffness matrix
Ki. That is, Φi(x) satisfies the eigen-value problem such as
KiΦi(x) ) Φi(x)Λi, where Λi is the diagonal matrix whose
component is the eigen-value of Ki. With transformation,
the potential energy and the kinetic energy without con-
straints can be represented in the space spanned by normal
modes of each subdomain.

Here, the displacement vector represented in the normal mode
space, vT ) [vA

T vB
T], has the degrees of freedom larger than

the degrees of freedom of a protein, since the constraints
are not imposed.

Now, in order to describe the motion of entire protein
domains, we have to impose the geometric constraints as
shown in Figure 1(a). For instance, nodal points 37 of the
domain A colored green is the identical nodal point 287 of
the domain B colored blue, so that the displacement field
for such two nodal points should be continuous, i.e. uA

37 )
uB

287. In general, the geometric constraints for interface
between two subdomains can be represented in the form of
Pv ) 0. Since v has the redundancy because of redundant
enumeration of nodal points at the interface belonging to
subdomains A and B, a vector v can be decomposed into
independent variable w(t) and dependent variable z(t). The
constraint equation, i.e. Pv ≡ P1w(t) + P2z(t) ) 0, leads to
the relation of

Figure 1. (a) Schematic illustration of component mode
synthesis (CMS) applied to hemoglobin. Here, hemoglobin is
decomposed into 2 subdomains (subdomains A and B). The
red dotted points represent the nodal points (residues)
belonging to interface between 2 subdomains. Here, for nodal
points at interface, the geometric constraints are imposed such
that displacement vectors of residues at interface are continu-
ous. (b) Schematic illustration of hierarchical component mode
synthesis (hCMS) which decomposes the protein structure into
a hierarchy composed of several subdomains. The eigenvalue
problem for the n-th subdomain or (n+1)-th subdomain in the
(l+1)-th hierarchy is solved for obtaining the normal modes
of the N-th subdomain in the l-th hierarchy. This process is
repeated until one runs into the 0-th hierarchy. In this work,
we perform the hierarchical decomposition of protein into
subdomains equivalent to protein domains.

V' ) 1
2

(uA
TKAuA + uB

TKBuB) (4)

T' ) 1
2

(u̇A
TMAu̇A + u̇B

TMBu̇B) (5)

V' ) 1
2

[vA
T vB

T ][ΛA 0
0 ΛB

][vA

vB
] ≡ 1

2
vTΛv (6.a)

T' ) 1
2

[v̇A
T v̇B

T ][ΦA
TMAΦA 0

0 ΦB
TMBΦB

][v̇A

v̇B
] ≡ 1

2
v̇TLv̇
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where B is the constraint matrix. Then, with the application
of constraints, the potential energy and the kinetic energy
for a protein structure, respectively, become

Here, D and S are the stiffness matrix and mass matrix,
respectively, for a protein structure, represented in the space
spanned by the normal modes of subdomains. It should be
noted that the potential energy V and the kinetic energy T
given by eqs 8.a and 8.b, respectively, are the exact form
for potential energy and kinetic energy for a protein structure
composed of 2 subdomains, since the geometric constraints
that describe the domain-domain interaction are imposed.

The normal-mode analysis of a protein structure can be,
thus, represented by the following eigen-value problem such
as DU ) SUΩ, where U is the modal matrix and Ω is the
diagonal matrix whose component is the eigen-value of a
protein structure. In order to describe the protein dynamics
with respect to normal modes, the modal matrix U has to be
transformed into matrix Z, whose column vectors represent
the normal modes, such as Z ) ΦBU, where Φ is the matrix
given by ΦT ) [ΦA

T ΦB
T].

As stated above, the component mode synthesis for a
protein with two domains is straightforward and easy to be
implemented. However, a large protein complex has several
rigid domains, so that we need to consider component mode
synthesis with several subdomains. For such a large protein,
we introduce the hierarchical component mode synthesis
(hCMS), which adopts the component mode synthesis in a
hierarchical manner. As shown in Figure 1(b), we divide the
protein structure into subdomains in a hierarchical manner.
Let us denote the index l representing the index of hierarchy
and the index n to indicate the index of subdomain in the
l-th hierarchy. The process for hCMS is given as follows:

(i) Define the stiffness matrix Kn
(l+1) and the mass matrix

Mn
(l+1) for the n-th subdomain in the (l+1)-th hierarchy.

(ii) Solve the eigen-value problem with using Kn
(l+1) in

order to obtain the normal modes of subdomains to construct
the matrices such as ΦA,n

(l+1) and ΦB,n
(l+1).

(iii) Convert the stiffness matrix Kn
(l+1) using normal

modes ΦA,n
(l+1) and ΦB,n

(l+1), that is, find the matrix Dn
(l+1).

Similarly, transform the mass matrix Mn
(l+1) to obtain the

matrix Sn
(l+1).

(iv) From the eigen-value problem Dn
(l+1)Un

(l+1) )
Sn

(l+1)Un
(l+1)Ωn

(l+1), the normal mode Zn
l for the n-th sub-

domain in the l-th hierarchy can be obtained.
(v) Repeat the process (i)-(iv) until the normal modes

Zn
l for every subdomain in the l-th hierarchy are obtained.
(vi) Set the normal modes Zn

l as eigen-modes ΦA,N
l for

the subdomain A belonging to the N-th subdomain in the
l-th hierarchy. Similarly, the normal modes Zn+1

l is set to
the eigen-modes ΦB,N

l.

(vii) Repeat the process (i)-(vi) until one runs into the
0-th hierarchy.

Here, it should be noted that we perform the hierarchical
decomposition of a protein structure until each subdomain
has the appropriate degrees of freedom (see Results and
Discussion).

Results and Discussion

We considered the model proteins such as hemoglobin (in
open and close forms), citrate synthase, and motor protein
F0-ATPase. These proteins have several subdomains, i.e. 2
subdomains for citrate synthase, 4 subdomains for hemo-
globin, and 13 subdomains for F0-ATPase, so that CMS (or
hCMS) is applicable to understanding the dynamics of such
proteins as well as low-frequency normal modes relevant to
conformational change.

Conformational Dynamics of Hemoglobin. We consider
the hemoglobin, which is a good model protein that is well
described by NMA and ENM. Hemoglobin consists of 4
subdomains (chains) such as R1, �1, R2, and �2 chains. In
our study, we take into account two types of CMS for a
description of hemoglobin dynamics. Specifically, we first
consider the CMS, which regards the protein structures as a
combination of 2 subdomains. We also take into account
hCMS to describe the hemoglobin structure as two subdo-
mains, each of which is composed of R and � chains.

First, let us take into account the mean-square fluctuation
(MSF) of hemoglobin, obtained by ENM, CMS (hemoglobin
composed of 2 subdomains), and hCMS (hemoglobin consisting
of 4 subdomains). At this moment, we employed the hemo-
globin in close form (pdb: 1a3n), in which a ligand is bounded.
Here, the force constant for ENM is given as γ ) 0.886 kcal/
mol ·Å2 with setting Rc ) 7 Å by comparing the Debye-Waller
factor (B-factor). Figure 2(a) shows the conformational fluctua-
tion behavior predicted by ENM, CMS, and hCMS. This

B ) [ I
-P2

-1P1
] (7)

V ) 1
2

wT(BTΛB)w ≡ 1
2

wTDw (8.a)

T ) 1
2

ẇT(BTLB)ẇ ≡ 1
2

ẇTSw (8.b)

Figure 2. (a) Debye-Waller temperature factors obtained
from ENM, CMS (consisting of two subdomains), and hCMS
(composed of four subdomains) for hemoglobin in close form
(pdb: 1a3n), (b) lowest-frequency normal mode (excluding the
zero modes corresponding to rigid body motions) obtained
from ENM, CMS, and hCMS for hemoglobin (pdb: 1a3n), (c)
Debye-Waller temperature factor of hemoglobin in close form
(pdb: 1bbb) described by ENM with cutoff radius of Rc ) 7 Å,
CMS based on such an ENM, and hCMS, and (d) lowest-
frequency normal mode for hemoglobin (pdb: 1bbb) obtained
from such an ENM, CMS, and hCMS.
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indicates the robustness of CMS or hCMS for analyzing the
conformational fluctuation behavior. More specifically, in order
to validate the robustness of CMS or hCMS, we have also
considered the lowest-frequency normal mode (with excluding
the zero normal modes corresponding to rigid body motion),
which is highly related to the conformational change of protein.
As shown in Figure 2(b), normal modes obtained from ENM
and CMS (or hCMS) are almost identical to each other with a
correlation of r > 0.99. This indicates that low-frequency normal
mode is well dictated by CMS (or hCMS). However, for a
hemoglobin in open form (pdb: 1bbb) described by ENM with
using Rc ) 7 Å, the low-frequency normal mode (or B-factor)
anticipated from CMS (or hCMS) is similar but not exactly
identical to that of ENM (see Figure 2(c) and (d)). Even though
the constraint condition is changed (i.e., different definition of
atoms at interface), the quality of normal mode or B-factor
computed from CMS (or hCMS) has not been improved (not
shown). This may be attributed to a protein structure such that
the structural feature of hemoglobin in an open form may not
be well depicted by ENM with Rc ) 7 Å. For validation of
this conjecture, we describe the hemoglobin by using ENM with
Rc ) 12 Å and its related CMS (or hCMS). It is shown that the
lowest-frequency normal modes computed from ENM and
CMS (or hCMS) are almost identical to each other, based on
protein topology dictated by Rc ) 12 Å (see Figure 3(a) and
(b)).

For further investigation of the quality of normal modes
estimated from CMS (or hCMS), we have introduced the
parameter, referred to as oVerlap,34 defined as �ij )
vi

ENM ·vj
CMS, where vi

ENM and vj
CMS are the i-th and j-th normal

modes obtained from ENM and CMS, respectively. The
quantity �ij close to 1 indicates the high correlation (similar-
ity) between the i-th normal mode obtained from ENM and
the j-th normal mode computed from CMS, while such a
quantity close to zero represents that two normal modes are
rarely correlated. We have shown the density map of oVerlap
for hemoglobin in both forms (see Figure 4). It is remarkable
that low-frequency normal modes, which play a role in
conformational change, obtained from CMS are highly
correlated to those estimated from ENM. This suggests the
robustness of CMS (or hCMS) in the prediction of low-
frequency normal modes that are typically involved in
conformational change. However, the correlation between
high-frequency normal modes obtained from ENM and CMS
is decreased. This provides that high-frequency normal
modes, related to localized motion (e.g., fast motion of
receptor due to ligand-receptor binding), may not be
anticipated from CMS (or hCMS). Further, for quantifying

the correlation between normal modes computed from ENM
and CMS, we have adopted the quantity such as spanning
coefficient,34 defined as δi ) ∑j)1

M �ij. The spanning coefficient
indicates that a normal mode of CMS can be spanned by M
normal modes of ENM. Here, we set M ) 50, which means
that the spanning coefficient indicates how much a normal
mode of CMS can be represented by 50 low-frequency
normal modes of ENM. As shown in Figure 4(c) and (d),
low-frequency normal modes (up to ∼40 normal modes) of
CMS can be well dictated by the space spanned by 50 low-
frequency normal modes of ENM. This implies that, for
hemoglobin, low-frequency normal modes (up to ∼40 low-
frequency modes) can be well predicted by CMS (or hCMS).

Conformational Dynamics of Model Proteins. We have
considered several model proteins such as citrate synthase
in open, and close forms, and F0-ATPase motor protein. We
compared the B-factors of model proteins obtained from
CMS (or hCMS) with those estimated from ENM. Similar
to the case of hemoglobin, the B-factors are well reproduced
by CMS (or hCMS), indicating the robustness of CMS for
predicting the fluctuation behavior. For further validation,
we have taken into account the lowest-frequency normal
modes of model proteins obtained from ENM as well as
CMS (or hCMS). It is shown that low-frequency normal
modes anticipated from CMS (hCMS) are almost identical
to those evaluated from ENM. With similar analyses on
oVerlap and spanning coefficient, the low-frequency normal
modes of model proteins related to their biological function
(e.g., conformational change) can be well dictated by CMS
(hCMS). For details, see the Supporting Information.

Effect of Constraints on Protein Dynamics Described
by CMS. Constraint equation is essential in CMS (or hCMS)
in order to convert the stiffness matrix (and/or the mass
matrix) into that spanned by normal modes of subdomains.
It is assumed that the boundary nodal points were selected
in such a way that two residues belonging to two different
subdomains are boundary nodal points at the interface
between two subdomains if the distance between two such
residues is within a certain distance, referred to as search

Figure 3. (a) Debye-Waller temperature factor for hemo-
globin (pdb: 1bbb) described by ENM with cutoff radius of Rc

) 12 Å, and CMS based on such an ENM, and (b) lowest-
frequency normal modes computed from such an ENM and
CMS.

Figure 4. Overlap between normal modes obtained from
ENM and CMS for hemoglobin in (a) close form (pdb: 1a3n)
and (b) open form (pdb: 1bbb). Spanning coefficient between
normal modes computed from ENM and CMS for hemoglobin
in (c) close form and (d) open form. It is shown that
low-frequency normal modes estimated from CMS are highly
correlated with those from ENM.
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distance DS. If DS is very small, then two subdomains will
be less constrained so that the whole protein structure will
be more flexible than it is. On the other hand, if DS is very
large, then two subdomains are so constrained that the protein
structure is more rigid than it is. Figure 5 depicts the low-
frequency normal modes of hemoglobin obtained from CMS
with different constraints DS. Here, the structure of hemo-
globin in close form (pdb: 1a3n) is described by ENM with
Rc ) 7 Å, and DS is varying from 5 Å to 12 Å. For DS ) 5
Å the number of constraints is 4, whereas for DS ) 12 Å
the total number of constraints is 25. As shown in Figure
5(a), as long as DS is in the range of 5 Å-7 Å, the lowest-
frequency normal mode obtained from CMS is quantitatively
comparable to that computed from ENM. In the case of
hemoglobin in open form (pdb: 1bbb), we describe its
structure as a Gaussian Network Model (GNM) with a cutoff
distance of Rc ) 12 Å. For such a case, the CMS with use
of DS ) 12 Å provides the lowest-frequency normal mode
quantitatively comparable to that estimated from GNM
(Figure 5(b)), while the functional low-frequency normal
mode cannot be dictated by the CMS with DS < 12 Å. These
two examples suggest that the search distance DS for
constraint should be chosen such that DS is quantitatively
comparable to the cutoff distance Rc used in ENM (or GNM).
This may be attributed to the fact that, if DS ∼ Rc, the overall
stiffness of a protein described by CMS is close to that
dictated by the original structure. It is implied that the
constraint should be selected as long as the constraint does
not affect the overall stiffness of the protein structure
responsible for conformational fluctuation dynamics.

Conformational Fluctuation Dictated by Normal Modes
of CMS. The key of CMS is to transform the stiffness matrix
K in the Cartesian coordinate into that represented in the
space G spanned by normal modes of subdomains. This leads
the matrix S (i.e., stiffness matrix represented in the space
G) to be a diagonal matrix, and, consequently, it improves
the computational efficiency to obtain the natural frequencies
and their related normal modes for a protein. Here, we have
further considered the space, in which S is represented,
spanned by some normal modes (from lowest-frequency
mode to a certain frequency normal mode) rather than all
normal modes of subdomains. Here, such a space is denoted
as G*. This representation in G* will enhance the computa-
tion of functional low-frequency normal modes of proteins
as well as their conformational fluctuation. Figure 6 shows
the Debye-Waller temperature factors of model proteins

obtained from both ENM and CMS which employs the
different number of normal modes spanning the space G*
for S. It is shown that, at least, more than 50 normal modes
should be utilized in CMS in order to have the physically
meaningful conformational fluctuation information. In order
to quantify the correlation of normal modes between ENM
and CMS with the use of a different number of normal
modes, we have introduced the correlation parameter r
defined as35

Here, Bi
ENM and Bi

CMS indicate the Debye-Waller tem-
perature factor for residue i obtained from ENM and CMS,
respectively, N is the total number of residues, and angle
brackets < > represent the average given by 〈B〉 )(1/N)∑j)1

N Bj.
A value of the correlation parameter r close to 1 indicates
that the B-factor obtained from CMS is highly correlated to
that from ENM, while a value of r approaching 0 indicates
the uncorrelation between B-factors obtained from ENM and
CMS, and the value of r close to -1 shows the anticorre-
lation between B-factors computed from ENM and CMS.
As shown in Figure 7, it is shown that, at least, more than
50 normal modes spanning G* should be employed in CMS
in order to gain the B-factors with a correlation of >80%
compared to that obtained from ENM. It indicates that, if
one utilizes the 50 normal modes spanning the space G* in
CMS, one is able to estimate the Debye-Waller temperature
factor comparable to ENM. In other words, 50 normal modes
employed in CMS are sufficient to represent the protein
dynamics with computational efficiency.

Degree of Hierarchical Decomposition. We have per-
formed the hierarchical component mode synthesis (hCMS)
to protein structure until each hierarchical subdomain is
identical to the protein domain. For instance, the hCMS has

Figure 5. Lowest-frequency normal modes obtained from
CMS with different types of constraint (i.e., different search
distances DS) for hemoglobin in (a) close form (pdb: 1a3n)
and (b) open form (pdb: 1bbb). It is shown that the constraint
should be selected such that DS ∼ Rc, indicating that overall
stiffness should be maintained when constraint is determined.

Figure 6. Debye-Waller temperature factors obtained from
CMS in reduced space G* spanned by some normal modes
(i.e., 10 ∼ O(N) normal modes, where N is the total degrees
of freedom) for (a) hemoglobin (pdb: 1a3n), (b) citrate
synthase (pdb: 5csc), and (c) F0-ATPase motor protein (pdb:
1c17). It is shown that, at least, more than 50 normal modes
should be used for space G* in CMS.

r )
∑
i)1

N

(Bi
ENM - 〈BENM〉)(Bi

CMS - 〈BCMS〉)

�∑
i)1

N

(Bi
ENM - 〈BENM〉)2 ∑

j)1

N

(Bj
CMS - 〈BCMS〉)2

(9)
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been applied to hemoglobin such that the hemoglobin
structure is decomposed to 4 subdomains. In order to
investigate the available degree of hierarchy for hCMS, we
have considered the hemoglobin (composed of 4 protein
domains) with different hierarchies s (i) 2 subdomains, (ii)
4 subdomains, (iii) 8 subdomains, and (iv) 16 subdomains.
Figure 8 shows the difference between eigen-values, for
hemoglobin, obtained from NMA and hCMS with different
hierarchies. It is shown that, as long as hemoglobin is
decomposed into 2 or 4 subdomains, the difference between
eigen-values obtained from NMA and hCMS is insignificant.

On the other hand, as hemoglobin is decomposed into
smaller subdomains (i.e., smaller than protein domain),
the eigen-values obtained from hCMS are deviated from
those obtained from NMA. This indicates that hCMS with
decomposition of the protein structure into many subdo-
mains would not provide a good prediction of conforma-
tional fluctuation. Specifically, Figure 9 shows the cor-
relation between B-factors, for hemoglobin, obtained from
normal-mode analysis (NMA) and hCMS with given
hierarchies. It is shown that the hCMS with 2 or 4
subdomains predicts the thermal fluctuation behavior with
correlation of >90% to NMA. However, once hemoglobin
is decomposed into more than 4 subdomains, then the
correlation between B-factors obtained from NMA and
hCMS is <80%. As the hemoglobin is decomposed into
more subdomains (much larger than number of protein
domains), the worse correlation between B-factors ob-
tained from NMA and hCMS is obtained. For instance, if
hemoglobin is divided into 16 subdomains (composed of
∼25 residues), then the correlation between B-factors
obtained from NMA and hCMS is r ) ∼60%. This
indicates that our hCMS has to be implemented such that
a protein structure can be decomposed into the subdomains
at the protein domain level. This is attributed to the fact
that, if protein is decomposed into many subdomains
composed of a small number of residues, then the degrees
of freedom related to geometric constraint is equivalent
to degrees of freedom of subdomains, which leads to the
overconstraint of the subdomain. This implies that our

Figure 7. Correlation coefficient between Debye-Waller
temperature factors computed from ENM and CMS with
different reduced space G* for (a) hemoglobin (pdb: 1a3n),
(b) citrate synthase (pdb: 5csc), and (c) F0-ATPase motor
protein (pdb: 1c17). It is shown that 50 normal modes
spanning space G* in CMS provides the Debye-Waller
temperature factor quantitatively comparable to that computed
from original structure (ENM) with a correlation of >80%.

Figure 8. The difference between eigen-values, for hemo-
globin, obtained from normal-mode analysis (NMA) and
hierarchical component mode synthesis (hCMS) with different
hierarchial decomposition. Here, ∆λ ) |λ̈NMA - λ̈hCMS|, where
¨λNMA and ¨λhCMS represent the eigen-value obtained from NMA
and hCMS, respectively. When a hemoglobin is decomposed
into 2 or 4 subdomains, the difference of eigen-values, ∆λ, is
insignificant. However, if a hemoglobin is decomposed into
more subdomains, the difference of eigen-values, ∆λ, be-
comes larger. This indicates that hCMS can be implemented
until protein strucure is decomposed into protein domains.

Figure 9. Correlation between thermal fluctations, for hemo-
globin, obtained from normal-mode analysis (NMA) and
hierarchical component mode synthesis (hCMS). It is shown
that, as long as a hemoglobin is split into 2 or 4 subdomains,
the fluctuation behavior (Debye-Waller B factor) obtained
from hCMS is quantitatively comparable to that from NMA with
correlation of >90%. However, if a hemoglobin is decomposed
into many subdomains (e.g., 16 subdomains), the fluctuation
behavior estimated from hCMS deviates from that predicted
from NMA with correlation of <70%. This indicates that our
hCMS has to be implemented until a protein structure is
decomposed at protein domain level rather than residue level.
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hCMS can be implemented at the protein domain level
rather than the residue level.

Computational Cost for hCMS. In order to compare
the computational speed of hCMS with that of general
NMA, we have measured the computation time to estimate
the thermal fluctuation of model proteins, composed of
>1000 residues, based on hCMS and NMA. As shown in
Table 1, hCMS with different constraints exhibits the
faster computation on low-frequency normal modes and
conformational fluctuation than general NMA by a factor
of ∼2. This indicates that our hCMS enhances the
computational time to estimate the conformational fluctua-
tion by a factor of ∼2 and that our hCMS can be
applicable to iterative NMA of a large protein complex
for understanding their conformational transition. The fast
computation of fluctuation dynamics using CMS is at-
tributed to fact that the representation of the stiffness
matrix in the normal modes of subdomains enhances the
computation in solving the eigen-value problem.31-33

Conclusion

We demonstrate the application of component mode syn-
thesis (CMS) or hierarchical CMS (hCMS) for the confor-
mational dynamics of a large protein complex. We have
shown that hCMS enables the computationally efficient
estimation of functional low-frequency normal modes, the
Debye-Waller temperature factor, and correlated motion.
The key of hCMS (or CMS) is to represent the stiffness
matrix in the space G spanned by normal modes of
subdomains. Moreover, it is shown that the reduced space
G* allows us to depict the large protein dynamics with
enhanced computational efficacy. This computationally ef-
ficient hCMS may improve the computational estimation of
conformational transition between two equilibrium states,
which is usually computed from iterative normal-mode
analysis with certain constraints.16,17 In the long run, such
hCMS will enable the understanding of the functional motion
of large protein complexes as well as their energy landscape
for conformational transition described by iterative normal-
mode analysis.

Acknowledgment. This work was supported by KO-
SEF (Grant No. R11-2007-028-03002) and KRF (Grant No.
KRF-2008-314-000012).

Supporting Information Available: Results for con-
formational dynamics of model proteins with hierarchical
component mode synthesis. This material is available free
of charge via the Internet at http://pubs.acs.org.

References

(1) Cui, Q.; Bahar, I. Normal Mode Analysis: Theory and
Applications to Biological and Chemical Systems; CRC
Press: 2005.

(2) Bahar, I.; Rader, A. J. Curr. Opin. Struct. Biol. 2005, 15,
586–592.

(3) Tama, F.; Brooks, C. L. Annu. ReV. Biophys. Biomol. Struct.
2006, 35, 115–133.

(4) Brooks, B.; Karplus, M. Proc. Natl. Acad. Sci. U.S.A. 1983,
80, 6571–6575.

(5) Janezic, D.; Venable, R. M.; Brooks, B. R. J. Comput. Chem.
1995, 16, 1554–1566.

(6) Hayward, S.; Go, N. Annu. ReV. Phys. Chem. 1995, 46, 223–
250.

(7) Cieplak, M.; Hoang, T. X.; Robbins, M. O. Proteins: Struct.,
Funct., Genet. 2002, 49, 114–124.

(8) Cieplak, M.; Hoang, T. X.; Robbins, M. O. Proteins: Struct.,
Funct., Genet. 2002, 49, 104–113.

(9) Sulkowska, J. I.; Cieplak, M. Biophys. J. 2008, 95, 3174–
3191.

(10) Yoon, G.; Park, H.-J.; Na, S.; Eom, K. J. Comput. Chem.
2009, 30, 873–880.

(11) Tirion, M. M. Phys. ReV. Lett. 1996, 77, 1905–1908.

(12) Bahar, I.; Atilgan, A. R.; Demirel, M. C.; Erman, B. Phys.
ReV. Lett. 1998, 80, 2733–2736.

(13) Atilgan, A. R.; Durell, S. R.; Jernigan, R. L.; Demirel, M. C.;
Keskin, O.; Bahar, I. Biophys. J. 2001, 80, 505–515.

(14) Xu, C. Y.; Tobi, D.; Bahar, I. J. Mol. Biol. 2003, 333, 153–
168.

(15) Tobi, D.; Bahar, I. Proc. Natl. Acad. Sci. U.S.A. 2005, 102,
18908–18913.

(16) Miyashita, O.; Onuchic, J. N.; Wolynes, P. G. Proc. Natl.
Acad. Sci. U.S.A. 2003, 100, 12570–12575.

(17) Zheng, W. J.; Brooks, B. R. Biophys. J. 2005, 88, 3109–
3117.

(18) Whitford, P. C.; Miyashita, O.; Levy, Y.; Onuchic, J. N. J.
Mol. Biol. 2007, 366, 1661–1671.

(19) Maragakis, P.; Karplus, M. J. Mol. Biol. 2005, 352, 807–
822.

(20) Zheng, W.; Brooks, B. R.; Hummer, G. Proteins: Struct.,
Funct., Bioinf. 2007, 69, 43–57.

(21) Doruker, P.; Jernigan, R. L.; Bahar, I. J. Comput. Chem. 2002,
23, 119–127.

(22) Eom, K.; Ahn, J. H.; Baek, S. C.; Kim, J. I.; Na, S. CMC:
Comput. Mater. Continua 2007, 6, 35–42.

(23) Eom, K.; Baek, S.-C.; Ahn, J.-H.; Na, S. J. Comput. Chem.
2007, 28, 1400–1410.

(24) Cheng, H.; Gimbutas, Z.; Martinsson, P. G.; Rokhlin, V.;
SIAM, J. Sci. Comput. 2005, 26, 1389–1404.

(25) Kurkcuoglu, O.; Jernigan, R. L.; Doruker, P. Polymer 2004,
45, 649–657.

(26) Kim, M. K.; Jernigan, R. L.; Chirikjian, G. S. Biophys. J.
2005, 89, 43–55.

(27) Tama, F.; Gadea, F. X.; Marques, O.; Sanejouand, Y. H.
Proteins: Struct., Funct., Genet. 2000, 41, 1–7.

Table 1. Computational Time for Estimating Normal
Modes

model protein

F0-ATPase
(pdb:1c17)

citrate synthase
(pdb:5csc)

citrate synthase
(pdb: 6csc)

GNM 63.37 s 27.6 s 25.82 s
CMS (Ns ) 2, Ds ) 5 Å) 22.19 s 9.77 s NA
CMS (Ns ) 2, Ds ) 6 Å) 22.76 s 9.93 s 10.33 s
CMS (Ns ) 2, Ds ) 7 Å) 23.73 s 10.09 s 10.61 s

1938 J. Chem. Theory Comput., Vol. 5, No. 7, 2009 Kim et al.



(28) Lu, M.; Ma, J. Proc. Natl. Acad. Sci. U.S.A. 2008, 105,
15358–15363.

(29) Weiner, J. H. Statistical mechanics of elasticity; Dover
Publication: 1983.

(30) Chandler, D. Introduction to modern statistical mechanics;
Oxford University Press: 1987.

(31) Meirovitch, L. Computational methods in structural dynam-
ics; SIJTHOFF & NOORDHOFF: Rockville, Maryland, USA,
1980.

(32) Bhat, R. B. J. Sound Vib. 1985, 101, 271–272.

(33) Sung, S. H.; Nefske, D. J. AIAA J 1986, 24, 1021–1026.

(34) Van Wynsberghe, A. W.; Cui, Q. Biophys. J. 2005, 89, 2939–
2949.

(35) Kondrashov, D. A.; Cui, Q.; Phillips, G. N., Jr. Biophys. J.
2006, 91, 2760–2767.

CT900027H

Large Protein Dynamics J. Chem. Theory Comput., Vol. 5, No. 7, 2009 1939



Structure Prediction of Bis(amino acidato)copper(II)
Complexes with a New Force Field for Molecular

Modeling
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Abstract: This article presents a new force field whose parameterization was based on
experimental crystal data and quantum chemically obtained vacuum structures of a series of
copper(II) complexes with aliphatic R-amino acids and their N-alkyl derivatives, along with the
SPC/E water model. The ability of the new force field to reproduce and predict the structural
properties of the copper(II) complexes in the gas phase, in simulated crystalline surroundings,
and solvated in water is examined. Molecular dynamics (MD) simulations with the new force
field yielded time-average structural coordinates of bis(glycinato)copper(II) [the only one of 25
modeled bis(amino acidato)copper(II) systems with published experimental structural data in
aqueous solution at room temperature] within the experimental error values. The study of the
cis-trans isomerization of bis(glycinato)copper(II) in aqueous medium at 300 K using the
quantum chemical polarized continuum model revealed a small energy difference (5 kJ mol-1)
between the solvated cis and trans minima, in line with the MD energy estimations. The new
force field proved promising in predicting the association of the complexes in aqueous solution
and formation of a nucleus of crystallization.

Introduction

Copper, like other essential transition metals (iron, zinc,
cobalt, manganese), is present in many biological fluids as
the free ion or complexed in metalloproteins and low-
molecular-weight complexes with peptides and amino acids.1-3

In healthy organisms, physiological copper concentrations
are maintained by a number of homeostatic mechanisms,
such as absorption regulation, cellular uptake and efflux,
intracellular transport, sequestration/storage, and copper
excretion from the body.4,5 Exposure to excess copper
through an accident, occupational hazard, environmental
contamination, or human genetic disorder (Menkes disease,
occipital horn syndrome, or Wilson disease)2,4 causes copper
overload, disruptions to normal copper homeostasis, copper-

induced oxidative damage, and toxic effects in organs.5 From
available data on human exposures worldwide, there is a
greater risk of health effects from copper deficiency (which
might also increase cellular susceptibility to oxidative
damage)5 than from excess copper intake.6

Copper is required as a cofactor for structural and catalytic
activity in a number of enzymes (e.g., cytochrome c oxidase,
lysyl oxidase, tyrosinase, superoxide dismutase).3 An analysis
of the types and frequencies of amino acid residues involved
in the coordination of metal ions in metalloproteins that was
performed on a set of structures extracted from the Protein
Data Bank in October 2007 showed that copper preferred
the coordination number 4 and that it was most often
coordinated by histidine imidazole nitrogen atom, followed
by cysteine sulfur atom.7 L-Histidine was also identified as
the predominant amino acid bound to copper(II) in bis-
(L-histidinato)copper(II) (with imidazole nitrogen, amino
nitrogen, and carboxylato oxygen donor atoms) and in mixed
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copper(II) complexes with other L-amino acids in human
blood serum.3

Whereas metalloproteins are relatively easy to isolate, low-
molecular-weight complexes form parts of multicomponent
systems with different complexing species in solution. Most
spectroscopic and electrochemical methods allow identifica-
tion of the prevailing complexes and their stability constants
in solutions, but they provide no structural information.3,8-19

For instance, trans and cis isomers for a number of bis(amino
acidato)copper(II) complexes were confirmed to exist in
aqueous solution by the 14N superhyperfine structure in
electron paramagnetic resonance (EPR) spectra without
details on their geometry.16-19 Some structural data only for
bis(glycinato)copper(II), Cu(Gly)2, in aqueous solution were
obtained by X-ray absorption spectroscopy,20 whereas for
other copper(II) chelates with aliphatic R-amino acids and
their N-alkyl derivatives, the only experimentally available
structures are those determined by X-ray and neutron
diffraction studies.21-43

The structural properties can be predicted and reproduced
using the molecular modeling methods, for example, mo-
lecular dynamics (MD) simulations. However, prerequisite
for MD calculations is a reliable molecular mechanics (MM)
force field.44 To the best of our knowledge, such a force
field has not yet been reported for low-molecular-weight
transition metal complexes with amino acids.

The development of MM models and force fields for
transition metal complexes has been complicated by the large
number of transition metal elements; system-specific metal-
ligand interactions; and the diversity of oxidation states,
coordination numbers, and geometrical shapes around metal
centers, together with the lack of experimental data for force
field parameterization.45-49 Both the development of quan-
tum chemical methods and the expansion of computer power
have contributed to an increase of quantum chemical data
suitable for force field parameterization and/or validation of
the MM results during past decade. Next, we mention several
parameterization studies involving copper complexes.

The polarizable MM procedure SIBFA (sum of interac-
tions between fragments ab initio computed) was used to
treat copper(II) in complexes with HIV-1 protease inhibitors,
N1-(4-methyl-2-pyridyl)-2,3,6-trimethoxybenzamide, and N2-
(2-methoxybenzyl)-2-quinolinecarboxamide to study the
structural and energetic aspects, as well as to compare the
relative stability of the complexes.50

A ReaxFF reactive force field, in which the parameters
were fitted to a substantial database of quantum chemical
data (binding energies, ground-state systems, full reactive
pathways), was developed for reactions involving carbon
materials and transition metal atoms, including copper,
usually employed in catalytic transformations.51 The force
field was applied for high-temperature MD simulations in
the presence of metal atoms and carbon fragments, which
demonstrated different catalytic abilities of the metals in the
formation of small polycyclic structures serving as nucleation
points for further nanostructure formation.

Given the need for an accurate and general force field for
type 1 copper binding sites in the copper(II) form of blue
copper proteins involved in electron transport, Comba and

Remenyi52,53 based the force field parameterization on
potential energy curves [computed energy vs bond distance
(valence angle) in the gas phase by density functional theory
(DFT)] of the model compound [Cu(imidazole)2(SCH3)-
S(CH3)2]+. DFT curves were used to fit corresponding MM
curves by least-squares fitting and thus to develop the force
field parameters.

The ligand-field MM (LFMM) model was also applied to
model compounds for the oxidized type 1 copper center.54,55

The parameters were developed on the basis of DFT
geometries optimized in vacuo for the homoleptic model
compounds [Cu(SCH3)4]2-, [Cu(S(CH3)2)4]2+, [Cu(imida-
zole)4]2+, and [Cu(OdCH2)4]2+; validated on the active-site
model complex [Cu(imidazole)2(SCH3)(S(CH3)2]+; and then
applied for modeling of the active sites of 24 crystallographi-
cally characterized blue copper proteins surrounded with a
layer of water molecules.55 The development and applications
of the LFMM model for transition metal complexes were
summarized in a recent review.56

We have developed MM models and force fields for
copper(II) complexes with aliphatic R-amino acids with the
aim of reproducing and predicting the properties of the whole
class of bis(amino acidato)copper(II) complexes (by subse-
quent inclusion of other amino acids in the force field
parameterization) in different environments (vacuum, crystal,
solution).31,57-59 To achieve this aim, the environmental
effects are calculated explicitly; that is, the same set of
potential energy functions and their empirical parameters are
used both for modeling the isolated systems and for simulat-
ing condensed phases. In the latter case, the effects of the
surrounding environment of a molecule (such as crystal and
solution) are calculated explicitly by including the environ-
ment in the calculations. The approach affects the force field
parameterization based on available experimental crystal data
and the results of quantum chemical studies.31,58,59

The experimental crystal and molecular structures of
anhydrous and aqua copper(II) complexes with aliphatic
R-amino acids and their N-alkyl derivatives21-43 differ with
respect to the copper(II) coordination polyhedron geometries
and intermolecular interactions, which makes this class of
complexes challenging for modeling. Copper(II), as a
Jahn-Teller (or pseudo-Jahn-Teller) center,60 adopts diverse
coordination geometries such as irregular square-planar,
distorted planar, flattened tetrahedral, elongated octahedral,
distorted octahedral, and irregular or distorted square pyra-
midal in the crystal state.59 In addition to the usual
intermolecular van der Waals and hydrogen-bonding interac-
tions, copper(II) can have weak coordinative bonding with
an axially placed water oxygen atom and/or carbonyl oxygen
atom from an adjacent molecule in the crystal lattice. The
exceptions are truly four-coordinate trans copper(II) chelates
with N,N-dialkylated valine,21,24 isoleucine,23 and alanine,22,31

bonded only via van der Waals interactions. Any newly
solved crystal and molecular structure of a copper(II) chelate
with amino acids is very welcome because it enlarges the
collection of knowledge about structural properties. Such an
example is the recent X-ray crystal and molecular structure
of anhydrous trans-bis(N,N-diethylglycinato)copper(II),
Cu(Et2Gly)2, in which a relatively short copper-to-axial-
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carbonyl-oxygen distance of 2.312 Å was found,37 whereas
in other anhydrous trans copper(II) amino acidates, this
distance spans the range from 2.6 to 3.1 Å.59

Although many quantum chemical studies on model
compounds of metal-binding sites in copper metalloproteins
have been performed,52,54,61,62 only a few have investigated
bis complexes of copper(II) with amino acids.58,59,63-65

Quantum chemical calculations of electronic and geometrical
properties,63-65 the gas-phase potential energy profile for the
cis-trans isomerization reaction,64 water molecules’ bindi-
ngs,59,63,65 and reaction rate constants64,65 have been done
for Cu(Gly)2. The quantum chemical calculations of equilibrium
structures for three anhydrous copper(II) complexes with
L-alanine, L-leucine, and L-N,N-dimethylvaline58 and four
aquabis copper(II) glycinato complexes59 revealed that the
experimental crystal and ab initio derived vacuum geometries
differ. Their structure comparisons clarify the influence of the
crystal environment on the copper(II) coordination geometry
and overall complex geometry, and the modeling of the impact
of the intermolecular interactions on the geometry changes
represents an additional challenge.31,37,38,58,59

Although our most recent force field, FFW,31,59 proved
as reliable for modeling anhydrous and aquabis(amino
acidato)copper(II) complexes in vacuo and in the crystal,37,38,59

the empirical parameters of the nonbonded potential energy
functions for the water molecule’s oxygen and hydrogen
atoms used in FFW yielded an incorrect water density
(around 1140 kg m-3) and a too-compact system with almost
no diffusion of water molecules in the MD simulations.
Specifically, the parameters yielded forces between the water
molecules that were too attractive; this did not cause
problems in hypothetical motionless equilibrium structures
calculated by MM gas-phase and in-crystal simulations, but
it did cause problems in MD calculations. Therefore, using
the empirical parameters of the SPC/E water model,66 the
FFW force field was reparametrized in an exhaustive effort,
and a set of force field empirical parameters equally
applicable for vacuum, crystal, and aqueous solution was
derived. This article presents the new force field and
discusses its ability to reproduce and predict the properties
of the copper(II) class of compounds in vacuo and in the
crystal by MM calculations, as well as in aqueous solution
by MD simulations. The MD results were verified by
comparison with the quantum chemical results obtained
within the polarized continuum model67 (PCM) approxima-
tion. In addition, standard transition state theory was applied
to PCM energies to gain insight into the cis-trans isomer-
ization reaction of Cu(Gly)2 in aqueous solution at 300 K.

Methods

MM Model and Calculations. The conformational (strain)
potential energy was calculated from the following basic
formula

Here, b, θ, �, �, and r are the bond length; the valence,
torsion, and out-of-plane angles, and the nonbonded distance,
respectively. De, R, and b0 are empirical parameters for bond
stretching (a Morse function); kθ and θ0 are empirical
parameters for valence-angle bending; and k� is an empirical
parameter for the out-of-plane deformational potential for
the carboxyl groups. Torsional interactions are specified with
V� and n (height and multiplicity of the torsional barrier,
respectively). One torsion per bond was calculated. A and B
are one-atom empirical parameters for the van der Waals
interactions (a Lennard-Jones 12-6 function). q is a charge
parameter. Intramolecular interactions between atoms sepa-
rated by three or more bonds were considered nonbonded
and were calculated with the Lennard-Jones (VLJ) and
electrostatic (VCoulomb,NB) potentials, respectively.

The interactions within the copper(II) coordination sphere
were modeled using the Morse potential between the copper
and ligand donor atoms (two amino nitrogen and two
carboxylato oxygen atoms); the repulsive electrostatic po-
tential between the four donor atoms (VCoulomb,1-3); and a
torsion-like potential dependent on the “torsion” angle
OsNsNsO, with two minima at 0° and 180° that cor-
respond to the cis- and the trans-planar CuN2O2 configura-
tions, respectively.31 It is a model without any explicit
valence-angle bending potential for the angles around
copper.31,57-59

The interactions between the water molecule’s oxygen and
hydrogen atoms and the atoms of a bis(amino acidato)cop-
per(II) complex were calculated with the Lennard-Jones
12-6 and electrostatic potentials regardless of the water
molecule position around the copper(II) complex.59

All MM calculations were performed using the modified
version68 of the Lyngby version of the CFF program for
conformational analysis.69-71 The conformational potential
energy was minimized for an isolated molecular system (in
vacuo or a gas-phase approximation) and for a molecule
surrounded by other molecules in the simulated crystal lattice
(a condensed-phase approximation). The intermolecular
atom-atom interactions were calculated using the same
functional forms (Lennard-Jones 12-6 function and Cou-
lombic potential) and empirical parameters as for the
intramolecular nonbonded interactions. The crystal simula-
tions were carried out using the Williams variant of the
Ewald lattice summation method72,73 with a spherical and
abrupt cutoff limit of 14 Å, and convergence constants of
0.2 Å-1, 0.2 Å-1, and 0.0 for Coulomb, dispersion, and
repulsion lattice summation terms, respectively. A detailed
description of the crystal simulations is given elsewhere.31,37,73

In the Lyngby-CFF program, the input charge parameters
are used for an assignment of fractional atomic charges.71

Vstrain ) V(b) + V(θ) + V(�) + V(�) + VLJ + VCoulomb

) ∑
bonds

De(e
-2R(b-b0) - 2e-R(b-b0) + 1) + 1

2 ∑
valence
angles

kθ(θ -

θ0)
2 + 1

2 ∑
torsion
angles

V�(1 ( cos n�) + 1
2 ∑

out-of-plane
angles

k��
2 +

∑
i<j
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The assignment is done by a special charge redistribution
algorithm, which keeps the total charge of the molecules
neutral and distributes the charge values in a manner
supposed to mimic ab initio results. The charge distribution
routine was modified31 to obtained the assigned fractional
charges for the copper(II) chelates with amino acids close
to the charges resulting from the natural population analysis74

(NPA). The reason for selecting NPA charges as a guideline
to the charge parameter values has been given elsewhere.58,68

Our choice of the potential energy functions was based on
available options in the Lyngby-CFF program, and the
combination of the Lennard-Jones 12-6 and Coulombic
potentials is the only one implemented for intermolecular
atom-atom interactions in the crystal simulator of the
program. Hence, the force field developed belongs to the
class of nonpolarizable fixed-charge force fields.75

The empirical parameters of the potential energy functions
were determined by combining trial-and-error guesses with
the optimization algorithm, which was a variant of the
general least-squares method (the Levenberg-Marquardt
algorithm).70,71

MD Simulations. The simulations were performed using
the program package Gromacs, version 3.2.1,76,77 with the
new MM force field FFWa-SPCE78 (see MM Force Field
Parameterization section) developed for copper(II) complexes
with aliphatic amino acids. MD calculations were carried
out for trans and cis isomers of Cu(Gly)2 separately, and
also for four Cu(Gly)2 molecules. One Cu(Gly)2 and four
Cu(Gly)2 molecules were solvated in rectangular boxes
containing 2159 and 5457 water molecules, respectively, and
equilibrated for 500 ps. Two nanoseconds of the productive
MD phase was accomplished under constant temperature and
pressure (298.15 K and 1 bar) using Berendsen T-coupling
(τT ) 0.1 ps) and Berendsen p-coupling (τp ) 0.5 ps).79 The
time step was 1 fs. The water molecules’ geometry was
constrained by the SETTLE procedure,80 whereas all Cu(G-
ly)2 degrees of freedom were relaxed during the MD
simulations. A cutoff limit of 1.5 nm was applied for the
calculations of Coulomb and Lennard-Jones 12-6 interac-
tions. The cutoff distance for the short-range neighbor list
was set to 1.0 nm.

Quantum Chemical Calculations. Geometries and single-
point energies of the stationary points of Cu(Gly)2 [i.e., trans
and cis minima, as well as a transition state (TS) structure]
in the gas phase and in aqueous solution were investigated
by the unrestricted B3LYP hybrid density functional
method81-84 using the LanL2DZ double-� basis set85 to
which an additional set of polarization functions86 on heavy
atoms except copper was added. In addition, diffuse func-
tions87 were added for the oxygen, nitrogen, and carbon
atoms. Through the use of the aforementioned basis set, the
effective core potentials of Hay and Wadt88-90 were used
to describe the shielding effects of the electrons in copper
inner shells. The basis set used is denoted as B3LYP/
LanL2DZ{D95v+(d)} throughout this article. All quantum
chemical calculations were performed using the Gaussian
03 package program.91 The choice of the B3LYP method
and the basis set used was based on previous studies of the
energies and geometries of copper(II)-glycinato systems.59,63-65

They yielded values similar to those obtained by a higher-
level theory method [G3(MP2)-B3] and thus indicated the
qualitatively correct behavior of the lower-level method.64

The PCM of Tomasi and co-workers,67 modified by
Barone and co-workers,92 was used to describe the effects
of the aqueous medium in the self-consistent reaction field
(SCRF) calculations. The environmental temperature was set
to 300 K. The water solvent was specified by the dielectric
constant of 78.39. The united-atom topological model was
applied to solvent radii optimized for the PBE0/6-31G(d)
level of theory.93-95

The initial atom positions for geometry optimizations of
the cis and trans minima and TS structure of Cu(Gly)2 were
the Cartesian coordinates of the stationary points obtained
from the quantum chemical gas-phase calculations.64 The
TS structure in aqueous solution at room temperature was
successfully calculated only upon using a “good enough”
initial guess and by applying the synchronous transit-guided
quasi-Newton (STQN) method implemented in programs
invoked using the QST3 keyword.96,97 The optimized
geometries of the stationary points were verified by frequency
calculations to be those of the required optimization state
(TS structure or energy minimum). The energies were
calculated using the same level of the theory and basis set.
Full geometry optimizations of the gas-phase and TS
structures obtained in solution were performed to check the
optimization process itself, as well as to verify whether the
two isomer structures were accessible from the presumed
TS structure.

Calculation of the Reaction Rate Constants. To evaluate
the reaction rates of the cis-trans isomerization process in
water solution (given that, to the best of our knowledge, there
are no experimental data on these reaction rate constants) to
the gas phase, we applied the equations from standard
transition state theory

where ∆GTSfcis and ∆GTSftrans represent respective quantum
chemically estimated Gibbs free energy differences between
the TS structure and the cis and trans minima, h is Planck’s
constant, kB is the Boltzmann constant, R is the gas constant,
and the temperature (T) is 300 K. The thermal correction to
the Gibbs free energy was calculated by adding the zero-
point vibrational energy plus thermal rotational-vibrational
free energy to the Gibbs free energy at temperature T
obtained from the potential energy in the standard way.91

Results and Discussion

MM Force Field Parameterization. The force field
FFW,31,59 developed for anhydrous and aqua copper(II)
chelates with aliphatic R-amino acids with trans- and cis-
CuN2O2 coordination polyhedra, was taken as the initial
empirical parameter set for parameter optimization. The
empirical parameters of the SPC/E water model66 were used

kcisftrans )
kBT

h
exp(-∆GTSfcis

RT ) (2a)

ktransfcis )
kBT

h
exp(-∆GTSftrans

RT ) (2b)
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to model the interactions of the water molecule’s oxygen
and hydrogen atoms. As the SPC/E water model uses a
harmonic approximation for the bond stretching potential,
we fitted the De, R, and b0 empirical parameters of the Morse
potential for the OWsH bond length (where OW denotes the
water oxygen atom) to fulfill the relation69 kb ) 2DeR2 (where
kb is the empirical parameter of the quadratic function for
the OWsH bond in the SPC/E model) and to yield average
OWsH bonds equal to 1.0 Å (Table 1). The empirical
parameters kθ and θ0 for HsOWsH valence-angle bending,
A and B for the Lennard-Jones potential for OW and H(OW)
(Table 1), and the partial charges [-0.8476e and 0.4238e
for OW and H(OW), respectively] were taken to be the same
as in SPC/E and were held constant during the force field
parameterization.

The force field parameterization procedure was the same
as for the FFW force field; specifically, it was based on the
experimental crystal and molecular structures and the
quantum chemical B3LYP minimum vacuum structures and
NPA charges.59

The modeling included 14 anhydrous and 11 aqua cop-
per(II) amino acid complexes with the same atom types. All
of the molecules are electrically neutral. Eleven of them have
trans- and four have cis-N2O2 coordination to the copper(II).

The empirical parameters were optimized with respect to
the experimental data (bond lengths, valence and torsion
angles, and unit cell dimensions) of the following seven
anhydrous and six aqua copper(II) complexes: trans-bis(L-
N,N-dimethylvalinato)copper(II)21 [Cu(L-Me2Val)2], trans-
bis(D,L-N,N-diethylalaninato)copper(II)22 [Cu(D,L-Et2Ala)2],
trans-bis(L-leucinato)copper(II)26 [Cu(L-Leu)2], trans-bis(D,L-
2-aminobutyrato)copper(II)26 [Cu(D,L-2-aBut)2], trans-bis(L-
2-aminobutyrato)copper(II)27 [Cu(L-2-aBut)2], cis-bis(D-
alaninato)copper(II)29 [Cu(D-Ala)2], trans-Cu(Et2Gly)2,

37 trans-
aquabis(L-N,N-dimethylvalinato)copper(II) hydrate32 [Cu(L-
Me2Val)2 ·2H2O], trans-aquabis(L-N,N-diethylalaninato)copper-
(II)33 [Cu(L-Et2Ala)2 ·H2O], trans-bis(D,L-alaninato)copper(II)
monohydrate40 [Cu(D,L-Ala)2 ·H2O], trans-diaquabis(sarco-
sinato)copper(II)39 [Cu(Sar)2 ·2H2O], trans-aquabis(L-N,N-
dimethylalaninato)copper(II) hexahydrate34 [Cu(L-Me2Ala)2 ·
7H2O], and trans-aquabis(N-tert-butyl-N-methylglycinato)-
copper(II)36 [Cu(tBuMeGly)2 ·H2O]. The empirical param-
eters were systematically tested on the set of 12 additional
copper(II) amino acid complexes, by modeling the crystal
and molecular structures of seven anhydrous and five aqua
copper(II) complexes: trans-bis(D,L-N,N-dimethylvalinato)-
copper(II)24 [Cu(D,L-Me2Val)2], trans-bis(L-N,N-dimethyli-
soleucinato)copper(II)23 [Cu(L-Me2Ile)2], trans-bis(L-N,N-
dipropylalaninato)copper(II)31 [Cu(L-Pr2Ala)2], trans-25 and
cis-30 bis(L-alaninato)copper(II), [Cu(L-Ala)2], trans-bis(1-
aminocyclopentanecarboxylato)copper(II)25 [Cu(1-Acpc)2],
trans-bis(R-aminoisobutyrato)copper(II)28[Cu(R-aiBut)2],trans-
aquabis(L-N,N-dimethylisoleucinato)copper(II)35 [Cu(L-
Me2Ile)2 ·H2O], trans-aquabis(N,N-dimethylglycinato)cop-
per(II) dihydrate38 [Cu(Me2Gly)2 ·3H2O], trans-aquabis(N,N-
dimetylglycinato)copper(II)38 [Cu(Me2Gly)2 ·H2O], cis-
bis(glycinato)copper(II) hydrate41 [Cu(Gly)2 ·H2O], cis-
aquabis(L-isoleucinato)copper(II)42 [Cu(L-Ile)2 ·H2O]. To ensure
the planarity of the copper(II) coordination geometry for

anhydrous molecules in vacuo as obtained by quantum
chemical calculations,58 the parameters were optimized with

Table 1. Potential Energy Parameter Seta,b

Morse Potential Parameters

bond De R b0

CusN 219.4140 2.2000 1.9900
NsC 52.4710 3.6000 1.4650
CsC 62.3610 4.0700 1.5150
CsH 101.6000 1.8000 1.0900
OwsH(Ow) 200.0000 1.4360 0.9800
NsH 93.0000 2.5000 1.0100
CplsOcarbonyl 54.6840 3.4800 1.2300
CsCpl 114.1670 3.9500 1.5220
CplsO 59.1680 2.7000 1.2900
CusO 85.7680 2.8500 1.9010

Valence Angle Potential Parameters

valence angle kθ θ0

CusNsH 55.0000 1.9106
H(Ow)sOwsH(Ow) 91.5390 1.9106
CusNsC 240.0000 1.9106
NsCsC 450.0000 1.9106
NsCsH 356.0000 1.9106
HsNsH 310.0000 1.9106
HsCsH 276.8110 1.9106
CsNsH 653.0000 1.9106
HsCsC 304.1030 1.9106
CsCsC 803.6020 1.9106
CsNsC 185.0000 1.9106
CplsCsH 471.1910 1.9106
NsCsCpl 434.7020 1.9106
CsCsCpl 235.0390 1.9106
OsCplsOcarbonyl 717.4690 2.1640
CsCplsOcarbonyl 383.8770 2.0940
CsCplsO 400.0000 2.0250
CplsOsCu 1100.0000 2.0070

Torsion Potential Parameters

torsion angle V� n

CsCsCsN 9.5000 3.0000
CsCsNsCu 6.0500 3.0000
CusOsCplsC 5.6000 -4.0000
OsCplsCsN 0.7000 12.0000
CplsOsCusN 4.3000 -4.0000
OsCusNsC 0.0900 12.0000
OsNsNsO 16.8000 -2.0000

Out-of-Plane Torsion Potential Parameter

out-of-plane torsion angle k�

Ocarbonyl(CplsCsO) 45.0000

Lennard-Jones Potential Parameters

atom A B

H 80.0000 3.5810
C 773.3199 9.7291
N 4451.0765 119.5843
O 1683.3682 73.8745
OW 793.3470 25.0000
Ocarbonyl 690.0000 40.3744
Cu 210.0000 4.3919
Cpl 310.0000 9.1000
H(Ow) 0.0000 0.0000

Charge Parameter

atom q

OW -1.2698
H(OW) 0.0010

a Uncommon symbols: Cpl, planar carbon atom; Ocarbonyl,
double-bonded oxygen atom, OW, water oxygen. b Units are as
follows: De, kcal mol-1; R, Å-1; b0, Å; kθ, kcal mol-1 rad-2; θ0, rad; V�,
kcal mol-1; A, (kcal mol-1 Å12)1/2; B, (kcal mol-1 Å6)1/2; q, electron
units (therefore, the expression for electrostatic interactions has to be
multiplied by 332.091 kcal mol-1 Å in order to be in kcal mol-1).
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respect to the B3LYP valence angles around copper in three
trans copper(II) chelates:58 Cu(L-Me2Val)2, Cu(L-Ala)2, and
Cu(L-Leu)2. They were then tested on the B3LYP calculated
gas-phase structures of four aqua copper(II) glycinato com-
plexes:59 cis-Cu(Gly)2 ·H2O, trans-Cu(Me2Gly)2 ·3H2O, trans-
Cu(Sar)2 ·2H2O, and trans-Cu(tBuMeGly)2 ·H2O

The empirical parameters were reoptimized and fitted with
the aim to obtain a potential energy parameter set that could
yield the best possible reproduction of experimental crystal
structures and in vacuo B3LYP structures, regardless of
whether the modeled systems were anhydrous or included
interactions with water molecules. A problem that might arise
during the parameter fitting process is that several combina-
tions of the potential energy parameter set might yield the
same reproduction results. A solution to this problem was
sought by restricting the empirical parameter hyperspace with
several specific conditions that the force field had to fulfill
to be considered reliable. We used the same seven conditions
as before,59 plus an additional one (denoted condition 8
below). Specifically, the conditions were (1) to yield both
trans and cis amino acid chelation to copper(II); (2) in
Cu(Sar)2 ·2H2O, to allow for the movement of 2H2O from
the axial position (as in the experimental crystal structure)39

to the equatorial position (as in the equilibrium vacuum
B3LYP structure)59 accompanied by a conformational
change59 during in vacuo energy minimization; (3) to be able
to simulate pronounced distortion from planarity of the
chelate rings in aqua relative to anhydrous complexes; (4)
to preserve the 2-fold crystallographic symmetry in the
simulated crystal lattices of aquabis Cu(II) complexes with
L-Me2Ala, L-Et2Ala, and tBuMeGly, with Cu(II) and OW on
a 2-fold axis; (5) to retain the irregular square-planar
copper(II) coordination geometry in the complexes that have
such coordination in the crystal state; (6) to retain in vacuo
distorted planar copper(II) coordination geometry58 for
anhydrous complexes; (7) to keep the positions of the water
molecules as close to their experimental crystal and B3LYP
vacuum positions as possible; and (8) to be able to reproduce
the span of experimental intermolecular CusOcarbonyl dis-
tances from 2.3 to 3.1 Å.

The final force field, named FFWa-SPCE (Table 1), met
all eight special requirements and still yielded the geometry
reproduction of the anhydrous and aqua copper(II) amino
acid complexes in vacuo and in crystal comparable to that
obtained by the force field FFW (see sections below). The
empirical parameters of the bond-stretching, valence-angle-
bending, torsion, out-of-plane-deformation, and Lennard-
Jones potentials of the FFWa-SPCE force field are listed in
Table 1. The charge parameters and fractional charge values
assigned according to these parameters by the Lyngby-CFF
program are given elsewhere.31,37,59 The charge parameters
for OW and H(OW) in Table 1 yielded fractional charges of
-0.8476e and 0.4238e, respectively, as assigned by the
Lyngby-CFF program and were the same in all studied
systems.

Efficacy of the New Force Field. To examine the efficacy
of the new force field, the MM equilibrium geometries
calculated in simulated crystalline surroundings and for
isolated systems were compared with the experimental crystal

data21-42 and the ab initio B3LYP-derived vacuum geomet-
ries,58,59 respectively. The FFWa-SPCE results were com-
pared with the results yielded by the FFW force field,37,38,59

to examine the simulation ability of the new force field
relative to that of FFW. The comparisons between the two
force fields’ results also indicate the validity of the MM
model used. The suitability of FFWa-SPCE for simulations
and predictions in aqueous solution was examined for
solvated Cu(Gly)2, the only bis(amino acidato)copper(II)
system for which, as mentioned in the Introduction, some
experimental structural data in aqueous solution at room
temperature were available from the literature.20

MM Simulations in Crystal. The experimental atomic
coordinates and the unit cell lengths and angles were taken
as the starting points for geometry optimization using the
crystal simulator of the Lyngby-CFF program. Table 2 shows
errors in reproducing the experimental internal coordinates
and unit cell dimensions for each compound, total root-mean-
square (rms) deviations between the experimental and
theoretical values calculated for the anhydrous and aqua
complexes separately, and the grand total rms values for all
25 compounds.

The FFWa-SPCE rms deviations between experimental
and theoretical internal coordinates and unit cell dimensions
are very much comparable to the values obtained with the
FFW force field and discussed elsewhere.37,38,59 In particular,
using FFW, the total rms deviations for anhydrous complexes
in the bond lengths, valence angles, torsion angles, and unit
cell lengths are 0.018 Å, 2.2°, 4.6°, and 0.287 Å, respectively;
for aqua complexes, the corresponding values are 0.016 Å,
2.3°, 6.1°, and 0.475 Å; and the grand total rms values for
all 25 complexes are 0.017 Å, 2.2°, 5.3°, and 0.381 Å. The
maximum difference between the experimental and theoreti-
cal unit cell angles is 9.6° by FFWa-SPCE and 8.7° by FFW
[for Cu(D,L-Ala)2 ·H2O]. Experimental unit cell volumes are
reproduced from -5.4% to 7.0% by FFWa-SPCE and from
-8.1% to 9.6% by FFW.

FFWa-SPCE is capable of simulating the flexibility
(plasticity) of the copper(II) coordination (Table S1, Sup-
porting Information). Table S1 (Supporting Information)
presents the mean values and standard deviations for the
experimental and FFWa-SPCE crystal coordination polyhe-
dron CusN and CusO bond lengths and angles around
copper for all studied copper(II) amino acidates. The
differences between the theoretical and experimental means
are commonly within the standard deviations given in Table
S1 (Supporting Information). The shapes of the coordination
polyhedra are generally well reproduced by FFWa-SPCE as
well as by FFW.59 FFWa-SPCE maintains the planarity of
the copper(II) coordination polyhedron in the crystal (as well
as in vacuo) for all molecules whose amino acid donor atoms
form an irregular square-planar configuration around the
copper(II) in the experimental crystal lattice.

The intermolecular axial copperscarbonyl-oxygen dis-
tances are experimentally in the range from 2.312 to 3.116
Å (Table S2, Supporting Information). The new force field
manages to cover a greater span of the particular distances
(from 2.376 to 2.877 Å; Table S2, Supporting Information)
than the force field FFW (from 2.519 to 2.855 Å; Table S2,
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Supporting Information), and hence, FFWa-SPCE copes quite
well with the eighth special condition used in the force field
parameterization. Both force fields overestimate the means
of the coppersaxial-water-oxygen-atom distances by 0.2 Å
(Table S3, Supporting Information). This result is due to the
force field parameterization procedure, that is, the best
possible reproduction obtained by taking all special force
field parameterization requirements for a reliable force field
into the consideration.

Good overall reproduction of the experimental crystal and
molecular structures confirms that FFWa-SPCE is reliable;
specifically, it accurately reproduces the crystal lattice effects,
and the van der Waals and hydrogen-bonding intermolecular
interactions are properly modeled.

MM Simulations in Vacuo. A very good match obtained
between vacuum quantum chemical B3LYP structures58 and
MM minimum geometries calculated by the two force fields,
FFW and FFWa-SPCE, for three anhydrous copper(II) amino
acid complexes is shown in Figure 1. FFWa-SPCE yielded
very much the same reproduction of the B3LYP structures
as FFW (discussed elsewhere59).

For the four copper(II) bis-glycinato systems containing
from one to four water molecules (Figure 2), the match
between the MM and B3LYP structures59 is not as good as
for the anhydrous complexes (as the aqua complexes are
generally more difficult to model than the anhydrous com-

plexes),59 but it is still acceptable. Both force fields similarly
reproduce molecular structures of the copper(II) glycinato
complexes, although they yield different positions for the
water molecules (Figure 2). The new force field overestimates
the B3LYP CusOW axial distance by 0.03 and 0.27 Å in
cis-Cu(Gly)2 ·H2O and trans-Cu(Me2Gly)2 ·3H2O, respec-
tively. The B3LYP and FFWa-SPCE-calculated hydrogen-
bond distances between OW and carboxylato oxygen atoms
also differ slightly, from -0.14 Å to 0.15 Å. The ab intio
O · · ·OW and N · · ·OW hydrogen-bond distances amount,
respectively, to 2.76 and 3.05 Å in cis-Cu(Gly)2 ·H2O and
2.72 and 2.89 Å in trans-Cu(Sar)2 ·2H2O.59 FFWa-SPCE
overestimates the corresponding distances by 0.12 and 0.35
Å in the cis complex and by 0.10 Å and 0.63 Å in the trans
complex, still yielding values generally accepted to count
as hydrogen bonds.

MD Simulations of Cu(Gly)2 in Aqueous Solution at
Room Temperature. MD simulations were performed using
the new force field FFWa-SPCE. The out-of-plane deforma-
tion angle, � (improper dihedral angle), is differently defined
in the Lyngy-CFF program [as the angle between the plane
defined by (C, Cpl, O) and Ocarbonyl] than in Gromacs [as the
angle between two planes defined by (C, Cpl, O) and by (C,
Ocarbonyl, O)]. To get the same equilibrium geometries in
vacuo by the two programs, the empirical parameter of the

Table 2. Comparison of Experimental and FFWa-SPCE Crystal Structures in Terms of the Root-Mean-Square Deviations
(rms) in Internal Coordinatesa and Unit Cell Constants (a, b, and c, in Å) and Differences, ∆, between Experimental and
Theoretical Unit Cell Angles (R, �, and γ, in deg) and Volumes (V)

compound rms(∆b) rms(∆θ) rms(∆�) rms(∆a,∆b,∆c) ∆R, ∆�, ∆γ 100∆V/Vexp

Cu(L-Me2Val)2 0.015 2.4 2.9 0.525 0.0, 0.0, 0.0 -1.4
trans-Cu(L-Ala)2 0.017 2.7 4.1 0.207 0.0, 3.7, 0.0 -2.3
Cu(L-Leu)2 0.016 2.2 4.2 0.263 0.0, -1.1, 0.0 -0.4
Cu(D,L-2-aBut)2 0.015 1.7 4.2 0.171 0.0, -0.7, 0.0 -4.6
Cu(1-Acpc)2 0.010 1.7 1.6 0.139 0.0, 4.6, 0.0 -2.4
Cu(D,L-Et2Ala)2 0.030 1.9 3.4 0.240 4.2, 1.3, -3.5 2.7
Cu(D,L-Me2Val)2 0.010 1.5 0.9 0.109 0.0, 1.1, 0.0 1.0
Cu(L-2-aBut)2 0.017 2.2 4.9 0.254 0.0, 1.2, 0.0 -3.2
Cu(R-aiBut)2 0.015 2.2 3.1 0.151 0.0, -0.7, 0.0 0.5
Cu(L-Me2Ile)2 0.020 2.7 4.7 0.479 0.0, 0.5, 0.0 -0.5
Cu(L-Pr2Ala)2 0.018 1.7 3.4 0.254 0.0, -0.2, 0.0 -5.4
Cu(D-Ala)2 0.024 1.8 5.1 0.209 0.0, 0.0, 0.0 -4.4
cis-Cu(L-Ala)2 0.009 1.9 5.7 0.207 0.0, 0.0, 0.0 -4.1
Cu(Et2Gly)2 0.018 2.5 3.6 0.041 0.0, 0.0, 0.0 -0.1

total 0.018 2.1 3.8 0.264

Cu(L-Me2Val)2 ·2H2O 0.010 1.7 3.5 0.816 1.7, 2.5, 4.1 2.6
Cu(Sar)2 ·2H2O 0.018 1.2 5.8 0.640 0.0, -2.7, 0.0 2.8
Cu(L-Et2Ala)2 ·H2O 0.019 1.7 5.3 0.268 0.0, 0.0, 0.0 1.3
Cu(tBuMeGly)2 ·H2O 0.021 3.2 5.9 0.101 0.0, 0.0, 0.0 1.6
Cu(L-Me2Ile)2 ·H2O 0.016 2.1 4.5 0.092 0.0, 0.0, 0.0 1.1
Cu(D,L-Ala)2 ·H2O 0.023 2.5 8.5 0.769 0.0, 9.6, 0.0 4.4
Cu(L-Me2Ala)2 ·7H2O 0.008 2.0 1.7 0.524 0.0, 2.7, 0.0 7.0
Cu(Gly)2 ·H2O 0.018 1.3 14.2 0.473 0.0, 0.0, 0.0 3.8
Cu(L-Ile)2 ·H2O 0.013 3.2 6.7 0.123 0.0, 0.0, 0.0 -2.6
Cu(Me2Gly)2 ·3H2O 0.011 2.1 3.3 0.179 0.0, 0.0, 0.0 6.0
Cu(Me2Gly)2 ·H2O 0.012 2.2 2.8 0.197 0.0, 0.0, 0.0 1.1

total 0.016 2.2 6.4 0.461

grand total 0.017 2.2 5.0 0.364

a Internal coordinates: bond lengths, b (in Å), valence angles, θ (in deg), torsion angles � (in deg). Hydrogen atoms were not taken into
account.
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out-of-plane deformation potential V(�) in eq 1 was adjusted
to k� ) 99.5 kcal mol-1 rad-2 for use in Gromacs.

The ability of the FFWa-SPCE force field to predict
structural properties in aqueous solution was examined by
simulating solvated cis- and trans-Cu(Gly)2 and by compar-
ing the theoretical MD results with experimental data20

obtained by X-ray absorption spectroscopy. Table 3 presents
selected experimental structural coordinates (the technique
could not distinguish one isomer from the other), along with
the corresponding values of the average MD structures, as
well as the means and standard deviations of the coordinate
values obtained during 20 ns of MD simulations at room
temperature, separately for the trans and cis isomers. Table
3 also includes the results obtained by quantum chemical

PCM calculations at the B3LYP/LanL2DZ{D95v+(d)} level
of theory. The MD copperswater-oxygen-atom distances in
the first and second coordination spheres (or second hydra-
tation shell) in Table 3 were obtained from the CusOW radial
distribution functions (Figure 3).

The deviations between the theoretical means and the
experimental values of the bond distances and angles are
within the theoretical and experimental error values (Table
3). This statement also applies to the valence angles around
copper(II), although their values suggest the distortion of the
copper(II) coordination geometry from planarity for the
solvated complex during MD simulations. The distribution
functions for the valence angles around copper(II) estimated
from the MD simulation data revealed the most frequent

Figure 1. Superposition of in vacuo equilibrium geometries of three anhydrous copper(II) amino acid complexes: structures
obtained using B3LYP (green), MM FFW (red), and FFWa-SPCE (blue).

Figure 2. Superposition of the equilibrium geometries of four isolated aquabis glycinato copper(II) systems: structures obtained
using B3LYP (green), MM FFW (red), and FFWa-SPCE (blue).
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values to be 172° and 171° for the NsCusN and OsCusO
angles, respectively, in trans-Cu(Gly)2 and 173° for the
NsCusO angles in cis-Cu(Gly)2.

Although the average structures obtained from the MD
simulations might not necessarily represent physically rea-
sonable structures, their structural coordinates (Table 3) are
in very good agreement with the experimental values (within
experimental errors) and the PCM coordinates.

The B factor, which is estimated from the rms fluctuations
of the atoms, was calculated and compared with available
experimental values from the X-ray diffraction measurements
of cis-Cu(Gly)2 ·H2O at room temperature41 and 173 K43 (Figure
4). The calculated B factors, which indicate the atom motions
in aqueous solution at room temperature, follow the general
pattern of the experimental B factors for heavy atoms with a
few exceptions, namely, the hydrogen-atom fluctuations are
calculated as more pronounced in solution at 300 K under the
influence of solvent-solute interactions than as measured in

the 173 K crystal structure (Figure 4). Apparently, the MD
simulations reproduced the molecular motion reasonably well.

Table 3. Selected Structural Coordinates of Cu(Gly)2 in Aqueous Solution at Room Temperature As Obtained from X-ray
Absorption Studiesa and Estimated from 20 ns of MD Simulations and by the PCM Method Separately for trans- and
cis-Cu(Gly)2

b

MD (FFWa-SPCE force field)

X-ray absorptiona average structure PCM

coordinate value variance transc cisc trans cis trans cis

CusN 1.99 0.004 2.00 (1) 2.00 (2) 1.98 1.97 2.02 2.03
CusO 1.95 0.006 1.93 (2) 1.92 (2) 1.91 1.92 1.96 1.96
Cu · · ·CR 2.84 0.020 2.83 (3) 2.82 (3) 2.79 2.79 2.88 2.88
Cu · · ·C′ 2.79 0.003 2.73 (3) 2.73 (3) 2.69 2.71 2.79 2.79
C′dO 1.24 0.006 1.23 (2) 1.23 (2) 1.20 1.21 1.24 1.24
NsCusN 167 (7) 179.7 179.5
NsCusO 179 36 169 (7) 175.3 177.4
OsCusO 167 (7) 179.7 179.8
CusC′dO 168 36 161 (3) 161 (2) 163.0 163.2 163.0 162.9
Cu · · ·OW,ax 2.40 (6) 0.03 (1) 2.6 2.6
Cu · · ·OW,s 3.3 (2) 0.06 (3) 3.5 3.4

a Reference 20. b Bond distances are in Å, and bond angles are in deg. Bond and angle variances are in Å2 and deg2, respectively.
Standard deviations are in parentheses. The OW,ax and OW,s denote the water oxygen atoms from the first and second coordination spheres,
respectively. c Means and standard deviations calculated from the values attained in 20-ns trajectories.

Figure 3. Radial distribution functions for solvated trans-Cu(Gly)2 (black) and cis-Cu(Gly)2 (red) determined during 20 ns of MD
simulation at room temperature.

Figure 4. B factors for the atoms of cis-Cu(Gly)2 calculated
from the MD simulation (black) and from experimental X-ray
crystal structures of cis-Cu(Gly)2 ·H2O measured at room
temperature (red) and at 173 K (blue) as reported in refs 41
and 43, respectively.
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Table 4 presents average values and corresponding rms
deviations of energy contributions for the trans- and cis-
Cu(Gly)2 ·2159H2O systems calculated during 20 ns of MD
simulations. Although the intramolecular potential energy
contribution was lower for the trans isomer than for the cis
isomer, the cis isomer had more favorable electrostatic
interactions with the water molecules. Different interactions
between the trans and cis conformations with the water
molecules [also noticeable in the different organization
structures of the water molecules around the isomers in
Figure 3 from the radial distribution functions calculated for
the distances between OW and atoms of Cu(Gly)2 that form
hydrogen bonds with water molecules] influenced the
water-water interactions as well. As a result, the two systems
had similar total energies, with the average total energy of
the solvated cis-isomer system being 3 kJ mol-1 lower than
that of the solvated trans-isomer system (Table 4). The MD
prediction is in line with the quantum chemical PCM energy
estimations for the two isomers in approximate aqueous
medium at 300 K, which predicted a small energy difference
of 4.96 kJ mol-1 in favor of trans-Cu(Gly)2. Moreover, recent
EPR measurements of Cu(Gly)2 in glycerol/water solution
confirmed the simultaneous presence of both isomers at room
temperature.19

Cis-Trans Isomerization of Cu(Gly)2 in Aqueous
Solution at 300 K. Table 5 lists the energy differences
between the cis and trans minima and the TS structure of
Cu(Gly)2 calculated at the B3LYP/LanL2DZ{D95v+(d)}
level of theory in the gas phase and in water medium at room
temperature. The stationary points in the gas phase were
calculated and compared with the geometries and energies
obtained at the higher level of theory [denoted as G3(MP2)-
B3LanL2DZ elsewhere]64 to verify the basis set and the method
used. The B3LYP/LanL2DZ{D95v+(d)} gas-phase potential

energy values differ by 1 kcal mol-1 from the higher theory’s
values,64 yielding the same energy difference value of 56.74
kJ mol-1 between the cis and trans minima. The geometries
of the stationary points derived at the lower and higher levels
of theory are almost the same, as the maximum differences
between their internal coordinates are up to 0.015 Å in bond
lengths (CusN), 3.7° in valence angles (NsCRsH), and 2.9°
in torsion angles (C′sCRsNsCu).

The TS geometries obtained in the gas phase and in
solution were additionally fully optimized in water medium.
Interestingly, in both instances initial guess of the orbital
energies directed the optimization to the cis final structure.
Nevertheless, with a different choice of initial orbital energies
(by using the Vshift option under the G03 SCF keyword),
the optimization of the TS structure in aqueous medium
ended in trans structure, as would be expected from the
isomer energy estimations that the trans isomer had lower
energy than the cis isomer (Table 5).

Compared to the gas-phase results, the PCM calculations
in aqueous solution revealed a slightly lower energy differ-

Table 4. MD Average Values of Energy Contributions and Corresponding rms Deviations (in Parentheses) Calculated from
the Values Attained during 20 ns of MD Simulations at Room Temperature Separately for the trans- and
cis-Cu(Gly)2 ·2159H2O Systems

energy (kJ mol-1)

trans cis

potential energy -101604.0 (244.9) -101609.0 (246.4)
kinetic energy 16309.3 (148.0) 16311.1 (148.2)
total energy -85294.8 (196.5) -85298.2 (198.9)

Cu(Gly)2 Intramolecular Contributions
V(b) 26.3 (8.4) 27.7 (8.7)
V(θ) 37.1 (9.3) 34.9 (9.0)
V(�) 46.7 (5.2) 45.9 (5.2)
V(�) 2.0 (1.7) 2.0 (1.7)
VCoulomb,NB -1516.1 (19.6) -1388.8 (14.8)
VCoulomb,1-3 2299.1 (19.1) 2290.5 (15.9)
VLJ -21.0 (2.0) -19.9 (2.8)
total 874.1 992.3

Intermolecular Cu(Gly)2 ·H2O Contributions
VCoulomb (short-range) -415.3 (43.6) -587.8 (51.2)
VCoulomb (long-range) -35.4 (29.5) -72.0 (32.6)
VLJ (short-range) -114.6 (15.9) -114.0 (16.2)
VLJ (long-range) -6.3 (0.2) -6.3 (0.2)

Intermolecular H2O ·H2O Contributions
VCoulomb (short-range) -117708.0 (414.5) -117588.0 (416.4)
VCoulomb (long-range) -3436.1 (230.0) -3467.4 (228.5)
VLJ (short-range) 19522.0 (256.3) 19518.3 (257.3)
VLJ (long-range) -284.4 (1.1) -284.6 (1.1)

Table 5. Potential Energy (∆V) and Gibbs Free Energy
(∆G) Barriers for the Isomerization Reaction of Cu(Gly)2 in
the Gas Phase and in Aqueous Solution at 300 K
Calculated at the B3LYP/LanL2DZ{D95v+(d)} Level of
Theory and Reaction Rates Calculated from Eqs 2a and 2b

gas phase aqueous solution

Energy Difference (kJ mol-1)
∆VTSfcis 28.95 70.10
∆VTSftrans 85.69 75.06
∆GTSfcis 26.26 63.67
∆GTSftrans 81.92 69.47

Reaction Rate (s-1)
kcisftrans 1.7 × 108 51.3
ktransfcis 3.4 × 10-2 5.0
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ence between the trans isomer and the TS structure, but a
considerably larger energy difference between the cis isomer
and the TS structure (Table 5), resulting in a dramatic
lowering of the potential energy difference between the trans
and cis conformations.

This result raised the following question: If the energy
difference between the cis and trans isomers is considerably

lower in aqueous solution than in the gas phase, as obtained
by both MD and PCM calculations, why could a cis-trans
interconversion of Cu(Gly)2 not be obtained during the MD
simulations? To find at least a qualitative answer to this
question, we calculated the reaction rate constants for the
isomerization reaction in aqueous solution and in the vacuum
from eqs 2a and 2b (Table 5) and compared them with the

Figure 5. System of 4Cu(Gly)2 ·5457H2O depicted at indicated times in MD simulations: (a) four trans isomers and (b) four cis
isomers colored red, green, yellow, and magenta, with water molecules in white. The figure was prepared using the VMD
program.102

Table 6. Aggregation Times (ps) of Four Solvated Cu(Gly)2 Molecules during MD Simulations for Four Studied Systems
Containing Four trans-Cu(Gly)2 Molecules, Four cis-Cu(Gly)2 Molecules, and Two trans-Cu(Gly)2 and Two cis-Cu(Gly)2

Molecules Having Different Initial Positions

Cu(Gly)2 dimer trimer tetramer

four trans 550, 885 9240
four cis 1582 2420 4470
two trans, two cis 125 (trans-trans) 1465 (cis-trans-trans) 12045 (cis-trans-trans-cis)
two trans, two cis 580 (cis-trans) 1615 (cis-trans-cis) 4605 (cis-trans-cis-trans)
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gas-phase rate constants determined by variational transition
state theory including quantum effects such as tunneling and
corner cutting.64 The gas-phase calculations64 showed that,
at room temperature, the cis isomer spontaneously transforms
into the trans isomer without breaking bonds, with reaction
rate constants kcisftrans and ktransfcis equal to 2.1 × 106 and
2.7 × 10-4 s-1, respectively. Hence, the gas-phase reaction
rates calculated from the standard transition state theory
(Table 5) are 2 orders of magnitude higher than the reaction
rate constants obtained by more precise variational transition
state theory. A contribution of 1 order of magnitude is caused
by the difference between the high-level and low-level
potential energy values of 1 kcal mol-1 (yielding 5.4 times
larger rate constant values). Because the tunneling effect was
calculated to be negligible at 300 K,64 an additional
contribution to the difference in the gas-phase rates should
be due to a variational effect.98 As the reaction rate constants
were obtained using information only at the stationary points
and assuming that the transmission factor was equal to unity,
they can be considered as zerothe-order approximations of
the actual rate constants. If we assume the same order-of-
magnitude error for the calculation of the reaction rate values
in aqueous solution (Table 5), then the interconversion
between the cis and trans isomers in aqueous solution should
be on the order from milliseconds to seconds, and this result
is in accord with our not observing the isomerization during
the MD simulations of 20 ns. Whether the assumption is
correct remains to be examined by MD calculations of the
free energy profile and activation free energy for the
intramolecular cis-trans interconversion of Cu(Gly)2 in
aqueous solution in forthcoming studies. It would also be
challenging to explore the possibility of cis-trans isomer-
ization by an intermolecular process through a chelate ring-
opening and bond-breaking and -forming mechanism. It
would be appealing to probe the force field for creating a
reactive force field (by adding new potential energy terms,
and further reparameterization) to calculate a reactive
potential energy surface and for proper configuration sam-
pling in solution within, for example, an empirical valence
bond (EVB) approach,99-101 which uses classical MM force
fields to model reactant and product configurations and can
accurately describe reactive potential energy surfaces.

Twenty-Nanosecond MD Simulations of the 4Cu-
(Gly)2 ·5457H2O System. The predictive properties of the
FFWa-SPCE force field were examined on a system of four
solvated Cu(Gly)2 molecules in aqueous solution at room
temperature. The MD trajectories were collected for systems
containing four trans and four cis isomers (Figure 5).
Interesting results were obtained as, after some time, the
Cu(Gly)2 complexes started to aggregate (Figure 5). The trans
isomers formed two dimers that eventually aggregated to a
tetramer. The cis isomers aggregated differently, from a
dimer to a trimer to a tetramer. Two additional aggregation
patterns were obtained for systems containing two trans and
two cis isomers by taking different initial positions (Table
6). Although the aggregation patterns were different, these
four MD trajectories offered some regularity. Interestingly,
it was observed that, if a trans-trans dimer formed first, the
aggregation to a tetramer required a longer time than if a

cis isomer formed the initial dimer (Table 6). The average
total MD energy of the solvated trans tetramer system was
lower than those of the cis tetramer system and the mixed
two trans, two cis tetramer by 24 and 12 kJ mol-1,
respectively.

The predicted results can be related to the experimental
observations. Specifically, in the solid state, trans-Cu(Gly)2

is thermodynamically more stable than the cis isomer.103

However, aqua cis-Cu(Gly)2 is the form that crystallizes upon
slowevaporationoftheaqueoussolutionatroomtemperature.41,43

Thus, the MD-predicted aggregation results suggest that the
crystallization process of Cu(Gly)2 is a more kinetically than
thermodynamically driven course of action.

Conclusions

The new force field parameterization, as a continuation of
our previous work on molecular modeling of copper(II)
complexes with aliphatic R-amino acids and their N-alkyl
derivatives in the vacuum and simulated crystal surroundi-
ngs,37,38,59 enables the prediction of structural properties in
aqueous solution as well. Specifically, the time-average bond
distances and angles of Cu(Gly)2 obtained during MD
simulations in aqueous solution at room temperature with
the new FFWa-SPCE force field are in good agreement with
the experimental data obtained by X-ray absorption spec-
troscopy20 and quantum chemical PCM calculations.

The quantum chemical PCM energy estimations of the
trans and cis minima and TS structure of Cu(Gly)2 in
approximate water medium revealed a pronounced lowering
of the energy difference between the two minima and an
increase in the energy difference between the cis conformer
and the TS structure with respect to the gas phase (Table 5).
The MD-based estimations suggest that the decrease in
energy difference was due to more favorable electrostatic
interactions of the cis than the trans isomer with the water
molecules. A small energy difference between the two
solvated isomer systems is also predicted by the MD
simulations and can be confirmed by experimental observa-
tions19 that the trans and cis conformers of Cu(Gly)2 are
simultaneouslypresent inaqueoussolutionat roomtemperature.

The use of the same set of relatively simple analytical
functions with carefully selected empirical parameters for
MM calculations in vacuo and in crystal, as well as MD
simulations in aqueous solution, can provide structural and
energetic information about bis(amino acidato)copper(II)
compounds in these environments. Furthermore, the study
can assist in understanding the self-association of the
complexes in solution and identifying the formation of a
nucleus of crystallization.
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crystal bond lengths and angles of the copper(II) polyhedra
in 14 anhydrous and 11 aqua copper(II) amino acidates
(Table S1), reproduction of experimental in-crystal axial
intermolecular Cu · · ·Ocarbonyl distances (Table S2), and
Cu · · ·OW distances (Table S3) in 8 anhydrous and 11 aqua
copper(II) amino acidates obtained using the FFW and
FFWa-SPCE force fields, respectively. This material is
available free of charge via the Internet at http://pubs.acs.org/.
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(51) Nielson, K. D.; van Duin, A. C. T.; Oxgaard, J.; Deng, W.-
Q.; Goddard, W. A., III. J. Phys. Chem. A 2005, 109, 493–
499.

(52) Comba, P.; Remenyi, R. J. Comput. Chem. 2002, 23, 697–
705.

(53) Comba, P.; Rememyi, R. Coord. Chem. ReV. 2003, 238-
239, 9–20.

(54) Deeth, R. J. Chem. Commun. 2006, 2551, 2551–2553.

(55) Deeth, R. J. Inorg. Chem. 2007, 46, 4492–4503.

(56) Deeth, R. J.; Anastasi, A.; Diedrich, C.; Randell, K. Coord.
Chem. ReV. 2009, 253, 795–816.
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